VANITA VISHRAM WOMEN'S UNIVERSITY SCHOOL OF SCIENCES DEPARTMENT OF MICROBIOLOGY

BACHELOR OF SCIENCE (B.Sc.) HONOURS MICROBIOLOGY PROGRAMME

under Learning Outcomes-based Curriculum Framework (LOCF) for Under Graduate (UG) Education

SEMESTERS 4

Core Courses (CC), Discipline Specific Elective (DSE), Skill Enhancement Course (SEC), Generic Elective Courses (GE), Ability Enhancement Compulsory Courses (AECC)

> Syllabus applicable to the students seeking admission in the B.Sc.- Microbiology (Honours) under LOCF w.e.f. the Academic Year 2022-2023

CORE COURSE PAPER 8

MB11150 MICROBIAL GENETICS

Course Objectives: Understanding genome organization, understanding mutation, methods of genetic material transfer among bacteria, understanding plasmid and its nature. Laboratory course is also designed in accordance with theory to affirm the understanding of concepts of microbial genetics.

Course learning outcomes: By the conclusion of this course, the students have -

Outcome 1. Understood genome organization of model organisms namely *E.coli* and *Saccharomyces*, and the molecular mechanisms that underlie mutations.

Outcome 2. Developed a fairly good knowledge about the three well-known mechanisms by which genetic material is transferred among the microorganisms namely transformation, transduction and conjugation.

Outcome 3. Can describe different types of the extrachromosomal elements or the plasmids; the nature of the transposable elements in the prokaryotic and the eukaryotic cells.

Outcome 4. Hands-on skills of isolation of plasmid DNA from bacterial cells and its visualization by performing agarose gel electrophoresis.

THEORY COURSE			
(4 Credits)			
Unit-1	Genome organization: E. coli, Saccharomyces, Tetrahymena. Mutations	15	
	and mutagenesis: Definition and types of Mutations; Physical and chemical	Lectures	
	mutagens; Molecular basis of mutations; Functional mutants (loss and gain		
	of function mutants); Uses of mutations. Reversion and suppression: True		
	revertants; Intra- and Intergenic suppression; Ames test; Mutator genes.		
	Concept of microbial epigenetics. Neurospora as model organism in study		
	of genetics.		
Unit-2	Microbial Genetics: Transformation- discovery, Griffith's experiment,	15	
	mechanism of transformation; Factors affecting transformation process,	Lectures	
	Competence and development of competence in S. Pneumonia.		
	Transduction – discovery, Lederberg and Tatum's experiment,		
	mechanism and types of transductions- Generalized transduction,		
	Specialized transduction, Sexduction and abortive transduction.		
Unit-3	Conjugation- discovery, experimental evidence, F-factor, F ⁺ & Hfr,	15	
	mechanism of conjugation, Cross between Hfr, F+&F-Conjugant and its	Lectures	
	application. Features of T4 genetics, Genetic basis of lytic versus lysogenic		
	switch of phage lambda.		
Unit-4	Types of plasmids – F plasmid, R Plasmids, colicinogenic plasmids, Ti	15	
	plasmids, linear plasmids, Plasmid replication and partitioning, Host range,	Lectures	
	plasmid incompatibility, plasmid amplification, Regulation of copy		
	number, curing of plasmids. Prokaryotic transposable elements -		
	Insertion Sequences, composite and non-composite transposons,		
	Replicative and Non replicative transposition, Mu transposon. Eukaryotic		

	transposable elements - Yeast (Ty retrotransposon), Drosophila (P	
	elements), Maize (Ac/Ds).	
	LAB. COURSE: MB11160 PRACTICAL VIII	
	(2 Credits)	
	Preparation of Master and Replica Plates.	
2.		
	Isolation of Plasmid DNA from <i>E.coli</i> .	
4.	Study different conformations of plasmid DNA through agarose gel electrophoresis (Demonstration).	
5.	Demonstration of bacterial conjugation.	
6.	Demonstration of bacterial transformation and transduction.	
Refer	ence Books	
1.	Benjamin Lewin, Gene VII, Oxford University Press, (2000).	
2.	Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter	
	Walter, Molecular biology of the Cell, 4th Edition. Garland publishing Inc. (2002).	
3.	Darnel I, Lodish and Baltimore, Molecular Cell Biology, Scientific American Publishing Inc. (2000).	
4.	. Watson. J.D, Baker. T.A, Bell. S.P, Gann. A. Levine. M. Losick. R, Molecular Bio	
	of Gene, 5th Edition. The Benjamin/Cummings Pub. Co. Inc. (2003).	
5.	Brown T.A., Gene Cloning and DNA analysis. 2nd Edition, ASM press. (2004).	
6.	Sandy Primrose. Principles of Gene Manipulation and Genomics. 7th Ed., Blackwel Publishers. (2006).	
7.	Gardner E J, Simmons M J and Snustad DP, Principles of genetics, 8th edition John Wiley	
	Sons, (2006).	
8.	Harvey Lodish; Arnold Berk; Chris A. Kaiser; Monty Krieger; Anthony Bretscher; Hidd	
	Ploegh; Angelika Amon; Kelsey C. Martin, Stephen C. Harrison. Molecular Cell biology Macmillan Higher Education	
9	David Freifelder, Essentials of molecular biology, Jones and Bartlett Publishers, 1998	

9. David Freifelder. Essentials of molecular biology. Jones and Bartlett Publishers, 1998

CORE COURSE PAPER 9

MB11170 MICROBIAL PHYSIOLOGY & METABOLISM

Course Objectives: Objectives of the course include; understanding concepts related to microbial growth in vitro condition, nutritional types of microorganisms, extremophiles and their adaptations, nutrient transport in microorganisms, various metabolic pathways of aerobes and anaerobes, some of the characteristic aerobic and anaerobic metabolic reactions of microbes occurring in nature. Laboratory course is designed with objectives of studying the growth curve, effect of environmental conditions on bacterial growth & understanding concept of TDP & TDT.

Course learning outcomes: By the conclusion of this course, the students are capable of -**Outcome 1**. Describing the growth characteristics of the microorganisms capable of growing under unusual environmental conditions of temperature, oxygen, and solute and water activity. **Outcome 2**. Describing the growth characteristics of the microorganisms which require different nutrients for growth and the associated mechanisms of energy generation for their survival like autotrophs, heterotrophs, chemolithoautotrophs etc.

Outcome 3. Differentiating concepts of aerobic and anaerobic respiration and how these are manifested in the form of different metabolic pathways in microorganisms.

	THEORY COURSE			
	(4 Credits)			
Unit-1	Definitions of growth, measurement of microbial growth, Batch culture,	15		
	Continuous culture, generation time and specific growth rate, synchronous	Lectures		
	growth, diauxic growth curve. Microbial growth in response to			
	environment -Temperature (psychrophiles, mesophiles, thermophiles,			
	extremophiles, thermodurics, psychrotrophs), pH (acidophiles,			
	alkaliphiles), solute and water activity (halophiles, xerophiles, osmophilic),			
	Oxygen (aerobic, anaerobic, microaerophilic, Facultative aerobe,			
	facultative anaerobe), barophilic.			
Unit-2	Microbial growth in response to nutrition and energy -	15		
	Autotroph/Phototroph, heterotrophy, Chemolithoautotroph,	Lectures		
	Chemolithoheterotroph, Chemoheterotroph, Chemolithotroph,			
	photolithoautotroph, Photoorganoheterotroph. Passive and facilitated			
	diffusion. Primary and secondary active transport, concept of uniport,			
	symport and antiport, Group translocation, Iron uptake			
Unit-3	Overview of metabolism, Concept of aerobic respiration, anaerobic	.15		
	respiration and fermentation Sugar degradation pathways i.e. EMP, ED,	Lectures		
	Pentose phosphate pathway TCA cycle. Electron transport chain,			
	phosphorylation, uncouplers and inhibitors. Fermentation - Alcohol			
	fermentation and Pasteur effect; Lactate fermentation (homofermentative			
	and heterofermentative pathways), concept of linear and branched			
	fermentation pathways			
Unit-4	Introduction to aerobic and anaerobic chemolithotrophy with an example	15		
	each. Hydrogen oxidation (definition and reaction) and methanogenesis	Lectures		
	(definition and reaction). Anaerobic respiration with special reference to			
	assimilatory and dissimilatory nitrate reduction (Denitrification;			
	nitrate/nitrite and nitrate/ammonia respiration; fermentative nitrate			
	reduction). Introduction to biological nitrogen fixation & ammonia			
	assimilation.			
	Introduction to phototrophic metabolism - groups of phototrophic			
	microorganisms, anoxygenic vs. oxygenic photosynthesis with reference to			
	photosynthesis in green bacteria, purple bacteria and Cyanobacteria.			

LAB. COURSE: MB11180 PRACTICAL IX (2 Credits)

1. Preparation of growth curve of *E.coli* by turbidimetric method.

- 2. Preparation of growth curve of *E.coli* by standard plate count methods.
- 3. Calculations of generation time and specific growth rate of bacteria from the graph plotted with the given data.
- 4. Effect of temperature on growth of *E.coli*.
- 5. Effect of pH on growth of *E.coli*.
- 6. Effect of carbon and nitrogen sources on growth of E.coli.
- 7. Effect of salt on growth of *E.coli*.
- 8. Demonstration of the thermal death time and decimal reduction time of *E.coli*.

Reference Books

- 1. Stanier, Ingraham, Wheelis and Painter. The Microbial world. McMillan Educational Ltd., London.
- 2. Moat and Foster, Microbial Physiology. Wiley.
- 3. Umbreit. Essentials of Bacterial Physiology.
- 4. Skokatch. Bacterial Physiology and Metabolism.
- 5. Kushner, D.J. Microbial life in Extreme Environments. Academic Press.
- 6. Pawar. C.B. Cell Biology.
- 7. Franklin and Snow, Biochemistry of Antimicrobial Action. Chapman and Hall, N.York.
- 9. Philipp. G. Manual of Methods for General Bacteriology.
- 10. David T. Plummer. An Introduction to Practical Biochemistry.
- 11. Subba Rao, N.S. Soil Microorganisms and Plant Growth.
- 12. Pelczar, MJ Chan ECS and Krieg NR, Microbiology McGraw-Hill.
- 13. Willey, Sherwood, Woolverton. Prescott, Harley, and Klein's Microbiology McGraw-Hill publication
- 14. Tortora, Funke, Case. Microbiology. Pearson Benjamin Cummings.
- 15. JACQUELYN G. BLACK. Microbiology Principles and explorations. JOHN WILEY & SONS, INC.
- 16. Madigan, Martinko, Bender, Buckley, Stahl. Brock Biology of Microorganisms. Pearson
- 17. Eugene W. Nester, Denise G. Anderson, C. Evans Roberts, Martha T. Nester. Microbiology, a Human Perspective, 6th Edition, McGRAW-HILL

CORE COURSE PAPER 10

MB11190 MICROBIAL ECOLOGY & ENVIRONMENTAL MICROBIOLOGY

Course Objectives: Students will be able to know about microbial ecology, biogeochemical cycling, several biological interactions of microbes, environmental microbiology, and microbial role in solid waste management, bioremediation, water potability and microbiological tests to determine the same. Lab course is designed with objectives of isolation of microbes from soil, rhizosphere, rhizoplane and root nodules, presence of microbial activity in by detecting enzymes, portability of drinking water and testing for the same and assessment of COD-BOD of

waste water.

Course learning outcomes: By the completion of this course, the students -

Outcome 1. Have developed a fairly good knowledge and understanding of different types of environments and habitats where microorganisms grow including the microbiomes of the human gut and animal gut.

Outcome 2. Have understood the significant activities of microorganisms in sewage treatment plants and solid/liquid wastes management.

Outcome 3. Have developed the practical skills for conducting experiments to assess the BOD/COD of wastewaters and their interpretation; practically assess the portability of drinking water by the use of standard microbiological tests

	THEORY COURSE			
	(4 Credits)			
Unit-1	History, significance and developments in the field of microbial ecology.	15		
	Microbial succession in decomposition of plant organic matter. Carbon	Lectures		
	cycle, Nitrogen cycle, Phosphorus cycle,. Sulphur cycle, Microbial role in			
	mobilization of Iron and manganese.			
Unit-2	Biological Interaction: A. Microbe- Microbe Interactions- Mutualism,	15		
	Synergism, Commensalism, Competition, Amensalism, Parasitism,	Lectures		
	Predation, Biocontrol agents. B. Microbe-Plant Interactions Roots, Aerial			
	Plant surfaces, Biological Nitrogen fixation (symbiotic/nonsymbiotic -			
	biofertilizers) C. Microbe-Animal Interactions - Role of Microbes in			
	Ruminants, Nematophagus fungi, Luminescent bacteria as symbiont.			
Unit-3	Environmental microbiology: Soil profile and soil microflora. Aquatic	15		
	Environment: Microflora of freshwater and marine habitats Atmosphere:	Lectures		
	Aeromicroflora and dispersal of microbes. Animal Environment:			
	Microbes in/on human body (microbiomics) & animal (ruminants)body.			
	Solid Waste management: Sources and types of solid waste, Methods of			
	solid waste disposal (composting and sanitary landfill). Liquid waste			
	management: Composition and strength of sewage (BOD and COD),			
	Primary, secondary (oxidation ponds, trickling filter, activated sludge			
	process and septic tank) and tertiary sewage treatment. Principles and			
	degradation of common pesticides, organic (hydrocarbons, oil spills) and			
	inorganic (metals) matter, biosurfactants.			
Unit-4	Treatment and safety of drinking (potable) water, methods to detect	15		
	potability of water samples: (a) standard qualitative procedure: presumptive	Lectures		
	test/MPN test, confirmed and completed tests for faecal coliforms (b)			
	Membrane filter technique and (c) Presence/absence tests.			
	LAB. COURSE: MB11200 PRACTICAL X (2 Credits)			
1 Iso	1. Isolation of microbes (bacteria & fungi) from soil (28°C&45°C).			
1.150				

B.SC.-MICROBIOLOGY, CORE COURSE SYLLABUS, B.SC.-SEMESTER-3 Page 6 of 7

- 2. Isolation of microbes (bacteria & fungi) from rhizosphere and rhizoplane.
- 3. Isolation of *Rhizobium* from root nodules.
- 4. Study the presence of microbial activity by detecting (qualitatively) enzymes (dehydrogenase, amylase, urease etc.) in soil.
- 5. Assessment of microbiological quality of water through detection of coliforms.

6. Determination of BOD & COD of wastewater sample.

Reference Books

- 1. Medigan, M.T., Martinko, J. M. and Parker, J. Brock Biology of Microorganisms. Pearson Education Inc., New York
- 2. Pelczar, MJ Chan ECS and Krieg NR, Microbiology McGraw-Hill.
- 3. Willey, Sherwood, Woolverton. Prescott, Harley, and Klein's Microbiology McGraw-Hill publication
- 4. Tortora, Funke, Case. Microbiology. Pearson Benjamin Cummings.
- 5. JACQUELYN G. BLACK. Microbiology Principles and explorations. JOHN WILEY & SONS, INC.
- 6. Madigan, Martinko, Bender, Buckley, Stahl. Brock Biology of Microorganisms. Pearson