VANITA VISHRAM WOMEN'S UNIVERSITY

SCHOOL OF SCIENCE AND TECHNOLOGY DEPARTMENT OF BIOTECHNOLOGY

BACHELOR OF SCIENCE (B.Sc.) HONOURS IN BIOTECHNOLOGY

Under Learning Outcomes Based Curriculum Framework

(LOCF)

For Undergraduate (UG) Education

SEMESTER - 1

Core Courses (CC)

Syllabus applicable to the students seeking admission in the following Program

B.Sc. Biotechnology under LOCF w.e.f. the Academic Year 2021-2022

BACHELOR OF SCIENCE (B.SC.) BIOTECHNOLOGY HONOURS

SEMESTER 1

CORE COURSE PAPER 1

INTRODUCTION TO BIOTECHNOLOGY

Course Objectives:

- To give idea about the Biotechnology and a detailed understanding of the field.
- To explore the interdisciplinary nature of the biotechnology.
- To identify the ways by which biotechnology can help the humans.
- To spread awareness among the learners about the development of biotechnology in India.

Course Outcome:

- Students will be able to define the term Biotechnology and its scope.
- Students will have an awareness of the significance of biotechnology and its related industry.
- Students will have an understanding on how biotechnology is related to us and where we are using biotechnology in daily life.
- Students will be able to understand the relation of biotechnology with other sciences i.e., genetics, microbiology, immunology, bioinformatics, environment, animal and plant science etc.
- Have an awareness of some of the current and future issues surrounding the relationship between biotechnology and government, investors, the environment and consumers and the impact of these on the development of future biotechnology industry.

BT11010 - THEORY COURSE CONTENT				
(4 Credits)				
	UDERSTANDING BIOTECHNOLOGY (10 Lectures)			
UNIT1	What is Biotechnology?			
	Biotechnology-an interdisciplinary pursuit	10		
	Biotechnology- a three-component central core	lectures		
	Product safety	icciures		
	Public perception of Biotechnology			
	Biotechnology and developing world			
	SCOPE OF BIOTECHNOLOGY-I (20 Lectures)			
	Recombinant DNA technology and genetic engineering			
	Genetically modified organisms			
	Bioinformatics			
UNIT2	Mammalian cell culture	20		
	Plant cell culture	lectures		
	Forensic science			
	Food and dairy Biotechnology			
	Waste Water and Sewage treatment			
	Aquatic biotechnology			
	SCOPE OF BIOTECHNOLOGY-II (20 Lectures)			
	Industrial Biotechnology			
	Fermentation			
UNIT3	Bio-fertilizer & Bio-pesticides	20 lectures		
	Environment & Biotechnology			
	Bioremediation			
	Bio-fuels			
	Bio-catalysis			
	Human health & Biotechnology			

B.SC. BIOTECHNOLOGY (HONOURS) SYLLABUS

	Vaccines		
	Monoclonal antibodies		
	Diagnostics in developing countries		
	BIOTECHNOLOGY IN INDIA (15 Lectures)	10	
	Introduction to DBT	lectures	
	Autonomous institutions of DBT		
UNIT4	Public sectors undertaking of DBT		
	BTIS-NET		
	Introduction to ABLE		
	Biotechnology- Current status of industrial growth in India		
	BT11020 - LAB COURSE CONTENT	1	
	(2 Credits)		
1. Lab s	afety and lab rules.		
2. Intro	duction to various Laboratory Apparatus viz. pH meter, Colorimeter, Spectrop	hotometer	
Centr	rifuge, Laminar air flow, Electrophoresis unit, Gel documentation unit, The	ermocycler	
ELIS	A reader, Incubator, Hot air oven, Autoclave, Anaerobic jar.		
3. Prepa	aration of laboratory reagents and solutions.		
4. Bread	d making.		
5. Case	study on some Ethical issues of Biotechnology.		
SUGGE	STED READING		
1. John	Smith (2005) Biotechnology, 5 th Edition.		
2. Ratle	dge, C. & Kristiansen, B. (2006) Basic Biotechnology, Cambridge University P	ress.	
3. Gupt	3. Gupta, P. K. (2005) Elements of Biotechnology, Rastogi Publications.		
4. Willi	am Thieman and Michael Palladino (2012). Introduction to Biotechnology (31	d Edition),	
Benja	amin Cummings Publishing Company. ISBN: 9780321766113		
5. Purol	Purohit, S. S. (2005). Biotechnology: Fundamentals and Applications (4 th Edition). Agrobios		
India			
6. DBT	website: <u>http://dbtindia.gov.in/</u>		

B.SC. BIOTECHNOLOGY (HONOURS) SYLLABUS

BACHELOR OF SCIENCE (B.SC.) BIOTECHNOLOGY HONOURS SEMESTER 1

CORE COURSE PAPER 2

BASICS OF BIOCHEMISTRY

Course Objectives:

- To make the students aware about foundations of biochemistry and role of water in biochemistry.
- Students will be given knowledge of biomolecules, their structure and role in cell functioning.
- Through this course the students are exposed to importance of biological macromolecules.
- This course presents the chemical reactions or metabolic functions in the living system and their regulations.
- To make the student to understood the concept of biochemical regulations, synthesis and degradation of biomolecules in the cell.

Course Outcome:

After the successful completion of the course, students will be able to,

- Explain the definition, classification, biological function, structure and interactions of Biomolecules.
- Discuss and differentiate the basic structure and function of cellular macromolecules in the cells.
- Analyze the functioning of life at molecular level.
- Gain knowledge about structure and different forms of various biomolecules in the biological systems.
- Apply the knowledge to control and regulate the various metabolic pathways and reactions of cell.

B.SC. BIOTECHNOLOGY (HONOURS) SYLLABUS F.Y. B.Sc. Semester 1

BT11030 - THEORY COURSE CONTENT				
(4 Credits)				
UNIT1	Basics of Biochemistry			
	Evolutionary foundation	10		
	Chemical foundation	lectures		
	Physical foundation			
	Water			
	Weak Interactions in Aqueous Systems			
UNIT2	Ionization of Water, Weak Acids, and Weak Bases	15		
UNIIZ	Buffering against pH Changes in Biological Systems	lectures		
	Water as a Reactant			
	The Fitness of the Aqueous Environment for Living Organisms			
	Proteins and Carbohydrates			
	Amino acids & Proteins: Structure & Function			
	Structure and properties of Amino acids			
	Types of proteins and their classification			
	Forces stabilizing protein structure and shape			
	Different Level of structural organization of proteins			
UNIT3	Protein Purification	18		
01113	Denaturation and renaturation of Proteins	lectures		
	Fibrous and globular proteins			
	Carbohydrates: Structure, Function			
	Properties of Monosaccharides, Disaccharides and Polysaccharides			
	Homo & Hetero Polysaccharides, Mucopolysaccharides			
	Bacterial cell wall polysaccharides			
	Glycoproteins and their biological functions			

	Lipids and Nucleic acids	17	
	Lipids: Structure and functions	lectures	
	Classification, nomenclature and properties of fatty acids, essential fatty acids		
	Phospholipids, sphingolipids, glycolipids, cerebrosides, gangliosides,		
	Prostaglandins, Cholesterol		
UNIT4	Nucleic acids: Structure and functions		
	Physical & chemical properties of Nucleic acids,		
	Nucleosides & Nucleotides, purines & pyrimidines		
	Biologically important nucleotides		
	Double helical model of DNA structure and forces responsible for A, B & $Z-$		
	DNA denaturation and renaturation of DNA		
	BT11040 - LAB COURSE CONTENT		
	(2 Credits)		
1. To stu	dy activity of any enzyme under optimum conditions.		
2. To study the effect of pH, temperature on the activity of salivary amylase enzyme.			
3. Determination of – pH optima, temperature optima, Km value, Vmax value, Vkat			
4. Effect of inhibitor (Inorganic phosphate) on the enzyme activity.			
5. Estimation of blood glucose by glucose oxidase method.			
6. Princi	iples of Colorimetry: (i) Verification of Beer's law, estimation of protein. (ii)) To study	
relatio	relation between absorbance and % transmission.		
7. Prepa	ration of buffers.		
8. Separ	ation of Amino acids by paper chromatography.		
9. Quali	tative tests for Carbohydrates, lipids and proteins.		
10. Purifi	cation of an enzyme from any natural resource.		
11. Quan	titative estimation of proteins by Bradford/Lowry's method.		
12. Perfo	rm assay for the purified enzyme.		
SUGGESTED READING			
<u> </u>			

- Berg, J. M., Tymoczko, J. L. and Stryer, L. (2006). Biochemistry. VI Edition. W.H Freeman and Co.
- 2. Buchanan, B., Gruissem, W. and Jones, R. (2000) Biochemistry and Molecular Biology of Plants. American Society of Plant Biologists.
- 3. Nelson, D.L., Cox, M.M. (2004) Lehninger Principles of Biochemistry, 4th Edition, WH Freeman and Company, New York, USA.
- 4. Hopkins, W.G. and Huner, P.A. (2008) Introduction to Plant Physiology. John Wiley and Sons.
- 5. Salisbury, F.B. and Ross, C.W. (1991) Plant Physiology, Wadsworth Publishing Co. Ltd.

VANITA VISHRAM WOMEN'S UNIVERSITY

SCHOOL OF SCIENCE AND TECHNOLOGY DEPARTMENT OF BIOTECHNOLOGY

Under Learning Outcomes Based Curriculum Framework (LOCF)

For Undergraduate (UG) Education

SEMESTER - 1

Ability Enhancement Compulsory Courses (AECC)

Syllabus applicable to the students seeking admission in the following Program

B.Sc./B.A./B.Com./B.B.A./ B.C.A. under LOCF w.e.f. the Academic Year 2021-2022

BACHELOR OF SCIENCE (B.SC.) BIOTECHNOLOGY HONOURS SEMESTER 1

ABILITY ENHANCEMENT COMPULSORY COURSE PAPER 1

ENVIRONMENTAL STUDIES-I

Course Objectives:

- To impart basic knowledge about the environment and its allied issues
- Natural resources and their management and biodiversity and its conservation.
- Developing an attitude of concern for the environment.
- Awareness, Knowledge, Attitudes, Skills, Capacity Building and participation for the sustainable and better environment.

Course Outcome:

The expected Student Learning Outcomes would be:

- About Earth structure and its environment and ecology
- Biodiversity and its role in human welfare and its conservation
- Various natural resources and their management
- They would able to critically examine all sides of environmental issues and apply understanding from various disciplines such as psychology, law, literature, politics, sociology, philosophy, and religion to create opinions about how to interact with the environment on both a personal and a social level.
- Understand the global character of environmental problems and ways of addressing them, including interactions across local to global scales.

BT12010 - THEORY COURSE CONTENT					
	(2 Credits)				
	Introduction of Environment and ecology				
	Scope and multidisciplinary nature of environmental studies				
	Concept and Components of environment (Atmosphere, Lithosphere and				
	Hydrosphere)				
	Concept, structure and function of an ecosystem.				
UNIT1	Energy flow in an ecosystem: food chains, food webs and ecological	15			
	pyramids.	lectures			
	Case studies of the following ecosystems:				
	a) Forest ecosystem				
	b) Grassland ecosystem				
	c) Desert ecosystem				
	d) Aquatic ecosystems (ponds, rivers, oceans)				
	Natural Resources: Renewable and Non-renewable Resources				
	Land as a resource, land degradation, landslides, soil erosion and				
	desertification				
	Forests & forest resources: Use and over-exploitation, deforestation,				
	Impacts of deforestation on biodiversity and tribal populations.				
UNIT2	Water resources: Use and over-exploitation of surface and ground water,	15			
	floods, drought, conflicts over water (international & inter-state).	lectures			
	Food resources: World food problems, changes caused by agriculture and				
	overgrazing, effects of modern agriculture, fertilizer-pesticide problems,				
	water logging, salinity.				
	Energy resources: Renewable and non-renewable energy sources, use of				
	alternate energy sources, growing energy needs.				
	Biodiversity and Conservation	15			
UNIT3	Introduction — Definition, ecosystem diversity, Value of biodiversity,	lectures			
	Biodiversity at global, national and local levels.	10000105			

Ability Enhancement Compulsory Course (AECC) SYLLABUS F.Y. B.Sc. Semester 1

India as a mega-biodiversity nation;

Threats to biodiversity: Habitat loss, poaching of wildlife, man- wildlife conflicts.

Endangered and endemic species of India. Common plant and animal species.

Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity

Field/Practical Work (Assignment/Report Submission)

Students are required to carry out the following practical work

1. To identify the natural resources of your area/any visited area

2. To identify the sources of energy used in your area/any visited area

SUGGESTED READING

Text Books:

- Bharucha, E. (2013). Textbook of Environmental Studies for Undergraduate Courses. Universities Press.
- Asthana, D. K. (2006). Text Book of Environmental Studies. S. Chand Publishing.
- Basu, M., Xavier, S. (2016). Fundamentals of Environmental Studies, Cambridge University Press, India

Reference books:

- Singh, J.S., Singh, S.P. & Gupta, S.R. 2006. Ecology, Environment and Resource Conservation. Anamaya Publications.
- Sodhi, N.S. & Ehrlich, P.R. (Eds). 2010. Conservation Biology for All. Oxford University Press.
- Tiwari, G.N. & Ghosal. M. K. 2005. Renewable Energy Resources: Basic Principles and Application. Narosa Publishing House.