VANITA VISHRAM WOMEN'S UNIVERSITY

SCHOOL OF SCIENCE AND TECHNOLOGY DEPARTMENT OF BIOTECHNOLOGY

BACHELOR OF SCIENCE (B.Sc.) HONOURS IN BIOTECHNOLOGY

Under Learning Outcomes Based Curriculum Framework

(LOCF)

For Undergraduate (UG) Education

SEMESTER - 5

Core Courses (CC)

Syllabus applicable to the students seeking admission in the following Program

B.Sc. Biotechnology under LOCF w.e.f. the Academic Year 2021-2022

SEMESTER 5

CORE COURSE PAPER 11

rDNA TECHNOLOGY

Course Objectives:

- To The objective is to impart fundamental knowledge to students about theoretical aspects and applications of rDNA technology and genetic engineering for human benefits
- To acquire adequate knowledge & necessary skills related to the different techniques involved in genetic engineering.

Course Outcome:

Students will gain knowledge of

- Players of gene cloning like DNA modifying enzymes, Cloning vector and Expression vector
- Steps of gene cloning, library preparation and screening of positive clone from library
- Advanced techniques of Recombinant DNA Technology
- Information about the few important recombinant proteins products and basics of Gene therapy techniques

	BT11210 - THEORY COURSE CONTENT			
(4 Credits)				
	•	Chronological development in rDNA technology.		
	•	Advantages and Limitations of Prokaryotic and eukaryotic systems.	20	
	•	Outline process of Gene Cloning		
LINIT 1	•	Molecular Tools for Gene Cloning: Enzymes (Nucleases, DNA		
		polymerase, Terminal Transferase, Reverse transcriptase, kinase,	Lectures	
		phosphatase, DNA ligases (T4 DNA ligases & E.coli DNA ligase)		
		adaptors, Linkers, Vectors.		
	•	Process of restriction digestion and ligation.		
	S	trategies of Genetic Engineering and Gene Cloning		
	•	Isolation of DNA (Genome and Plasmid) to be cloned and construction		
		of genomic library.		
	•	Isolation of RNA and construction of cDNA Library		
		• Isolation of mRNA, reverse transcriptase, oligo dC tailing		
		Addition of oligo G primer, Synthesis of second strand of cDNA	15 Lectures	
	•	Insertion of foreign DNA fragment into vector; linkers, adaptors and		
UNIT 2		homopolymer tailing		
	•	Methods of gene transfer in prokaryotic and eukaryotic cells: Chemical,		
		Physical & Viral mediated DNA transfer		
	•	Transformation and growth of cells		
	•	Selection of Clones; Insertion inactivation and Blue White screening,		
		colony hybridization techniques		
	•	Expression of cloned DNA molecules and maximization of expression:		
		Factors affecting Expression of cloned DNA		
	Advanced Techniques rDNA technology		15	
UNIT 3	•	Recombinant selection and screening methods:	Lectures	
		• Genetic		

3. Isolati	on and quantification of RNA using UV Spectrophotometer.	
2. PCR a	amplification and analysis by agarose gel electrophoresis.	
1. Isolati	on and quantification of <i>E.coli</i> genomic DNA using Spectrophotometer.	
	(2 Credits)	
	BT11220 - LAB COURSE CONTENT	
	 Applications of gene cloining techniques in Agriculture. Single nucleotide polymorphisms. Future strategies 	
	• Applications of gene cloping techniques in Agriculture	
UINII 4	oligonucleotides Vaccines	10 Lectures
	• Recombinant protein product- numan insum, interferon, numan Growth hormone Growth factors Monoclonal Antibodies Therapeutic	
	Descombinant protein product. Human Insulin Interferen Human Crewth	
	Genetically Engineered Microorganisms	
	ADDI ICATIONS OF CENETIC ENCINEEDING	
	• Methods for analysis of gene expression at KNA and protein level, large	
	Automated sequences genome sequencing	
	• DNA sequencing methods: Classical methods, NGS Strategies,	
	DNA fingerprinting, RAPD, RFLP, AFLP	
	Analysis of gene expression	
	• Mutagenesis	
	• PCR: Working Mechanism and Application, define qPCR	
	DNA sequencing	
	• Gel Electrophoresis: AGE & PAGE,	
	Autoradiography	
	\circ HART, HRT	
	labeling	
	• Nucleic acid hybridization: Molecular Probes and Nucleic acid	
	 Blotting Techniques: Southern, Western & Northern 	
	 Immunochemical 	

- 4. Preparation of alkaline lysis, pET-28a from *E.coli* DH5α, gel analysis and spectrophotometric analysis.
- 5. Restriction Digestion analysis of a given genome by *ECoR1*.
- 6. Preparation of competent cells and Transformation in *E.coli* with recombinant vector.

- 1. Brown, T.A., 2020. Gene cloning and DNA analysis: an introduction. John Wiley & Sons.
- Trevan, M.D., Boffey, S., Goulding, K.H. and Stanbury, P., 1987. Biotechnology; the biological principles. Open University Press.
- 3. Twyman R.M., 1998. Advanced Molecular Biology. Springer Link
- 4. Primrose, S.B., Twyman, R.M. and Old, R.W., 2001. Principles of gene manipulation (Vol. 6). Oxford: Blackwell Science.
- 5. Dubey, R.C., 1993. A textbook of Biotechnology. S. Chand Publishing.
- 6. Das, H.K., 2007. Textbook of biotechnology. John Wiley & Sons.
- 7. Singh, B.D. and Singh, A.K., 2015. Marker-assisted plant breeding: principles and practices.
- 8. Rastogi, V.B., 2008. Fundamentals Of Molecular Biology (2 Colour). Ane Books Pvt Ltd.
- Russell, D.W. and Sambrook, J., 2001. Molecular cloning: a laboratory manual (Vol. 1, p. 112). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.

SEMESTER V

CORE COURSE PAPER 12

Fermentation Technology II

Course Objectives:

- To make students aware of production aspects of various primary and secondary metabolites.
- To teach students how the products of fermentation are separated, concentrated and purified that is downstream processes.
- To make students aware of various methods used to treat fermentation industry effluent.
- To teach students what are the various factors that affects the economy of fermentation industry.

Course Outcome:

- Understand industrial level fermentation process and its outcomes
- Deal with various products' production purification aspects.
- Manage the factors affecting economy of fermentation industry.

BT11230 - THEORY COURSE CONTENT		
	(4 Credits)	
	Downstream processing/Recovery and Purification of	
	Fermentation Products:	
	Introduction to downstream processing	
	Removal of microbial cells and other solid matter, foam separation	
UNIT 1	(floatation), precipitation, filtration, centrifugation, cell disruption, Liquid-	20
	liquid extraction, solvent recovery, two-phase aqueous extraction, reversed	Lectures
	micelle extraction, supercritical fluid extraction, adsorption, removal of	
	volatile products, Basics of chromatography, Membrane processes, drying,	
	crystallization, whole broth processing	
	Industrial Processes and products I	
	Production of organic solvents (Ethanol, acetone, butanol)	20
UNIT 2	Production of organic acids (citric acid, acetic acid)	Lectures
	Production of amino acids (L-glutamic acid, L-lysine)	
	Industrial Processes and products II	
LINIT 2	Production of Industrial enzymes (Amylase, lipase, protease, Penicillin	10
	acylases)	Lectures
	Production of vitamins and antibiotics (Rifoflavin, β -lactam antibiotics)	
	Fermentation Economics -Basic objectives for development of successful	
	fermentation process,	
	Industrial production of Animal products	
UNIT 4	Animal cell culture production: Recombinant product (Plasminogen	10
	activator), Biopharmaceutical (Interferon), Monoclonal antibodies.	Lectures
	Plant cell culture production : Enzymes, Representative enzymes of primary	
	and secondary metabolites	

BT11240 - LAB COURSE CONTENT

(2 Credits)

- 1. Production, recovery (distillation) and estimation of ethanol.
- 2. Production, recovery (ammonium sulfate) and estimation of amylase.
- 3. Production, recovery (filtration) and estimation of citric acid.
- 4. Immobilization, activity determination and comparision of free and mobilized enzymes of yeast cells
- 5. Bioassay of penicillin
- 6. Extraction and purification of Lysozyme from egg-yolk using ion-exchange chromatography (demonstration).

- Crueger W and Crueger A. (2000). Biotechnology: A textbook of Industrial Microbiology. 2nd edition. Panima Publishing Co. New Delhi.
- Stanbury PF, Whitaker A and Hall SJ. (2006). Principles of Fermentation Technology. 2nd edition, Elsevier Science Ltd..

DISCIPLINE SPECIFIC ELECTIVE PAPER 1

ANIMAL BIOTECHNOLOGY

Course Objectives:

• To familiarize about the various Animal cell culture Fundamentals, Cytotoxicity and Genotoxicity, Molecular markers in animal health and production and Transgenic Animals.

Course Outcome:

Upon completion of the course, the student shall be able to comprehend

- The fundamental and concepts of Animal cell culture, Media preparation, Importance of aseptic conditions, Different types of cell culture, development of cell lines, subculturing. Cell culture techniques: media preparation, cell culture, maintenance of cell line: media change, passage, trypsinization, cryopreservation
- The concepts of cytotoxicity and Genotoxicity, Mutagenesis assay
- Molecular markers used in animal health and production, Properties of Ideal Markers, Applications of animal molecular markers
- Production techniques for transgenic animals and application of transgenic animals

BT14010 - THEORY COURSE CONTENT		
(4 Credits)		
	ANIMAL CELL CULTURE: Fundamentals	
	Facilities for animal cell culture, Equipments used in animal cell culture,	
	Contamination, aseptic conditions and sterilization	
	Different types of cell culture media, growth supplements, serum free media,	
	balanced salt solution, other cell culture reagents Culture of different tissues	20
	and its application, Primary and secondary culture, continuous cell lines,	Lectures
	suspension culture, and organ culture, Primary Culture-Primary explants,	
	Enzymatic disaggregation, Warm Trypsinization, Cold Trypsinization, Other	
	enzymatic procedures, Mechanical disaggregation, Separation of viable and	
	non viable cells.	
	Mechanism and metabolism of cell under culture conditions	
	Behaviour of cells in culture conditions, division, their growth pattern,	20 Lectures
	metabolism of estimation of cell number, Hayflicks Limit	
UNIT 2	Cell lines-Types of cell lines, Selection of cell lines, maintenance of cell	
	cultures, Subculture, Cryopreservation, Stem cell Cultures	
	Development of cell lines, characterization and maintenance of cell lines,	
	stem cells, cryopreservation, common cell culture contaminants	
	Cytotoxicity and Genotoxicity	
	Viability, Toxicity, and Survival Nature of the Assay	
	Estimation of Viability by Dye Exclusion	10
UNIT 3	Estimation of Viability by Dye Uptake	Lectures
	Clonogenic Assay for Attached Cells	
	MTT-Based Cytotoxicity Assay	
	Mutagenesis Assay by Sister Chromatid Exchange	
	TRANSGENIC ANIMALS	10
UNIT 4	Importance of Transgenic animal	Lectures
	Transgenic Mice and their applications	20000105

Transgenic Clone-Dolly		
Transgenic organisms to interrupt disease cycles		
Use of cell culture in industry		
BT14020 - LAB COURSE CONTENT		
(2 Credits)		
1. Packing and sterilization of glass and plastic wares for cell culture		
2. Chromosome preparation (normal karyotyping)		
3. Quantification of Chick line embryo cells by Trypan Blue exclusion dye		
4. Primary cell cultures : Human Lymphocyte culture		
5. To study SCE assay and calculate RI (Demonstration).		
6. MTT Assay (Demonstration).		
7. To study Cytokinesis Blocked Micronucleus (CBMN) assay		
8. To study Cytome assay		
9. Histochemical localization and enzyme		
SUGGESTED READING		
• Freshney RI. 2005. Culture of Animal Cells. Wiley Liss.		
• Mathur, S. 2009. Animal cell and tisse culture. Agrobios.		

• Pörtner, R., 2007. Animal cell biotechnology. Methods and Protocols, 2nd. Edition. Humana.

SEMESTER 5

DISCIPLINE SPECIFIC ELECTIVE PAPER 2

DEVELOPMENTAL BIOLOGY

Course Objectives:

- To make students aware of how the embryonic development takes place inside the body.
- To make students understand a number of advanced and basic tools in developmental biology.
- To make students competitive for CSIR NET, etc. competitive examinations.

Course Outcome:

- define various development biology related terminologies.
- know how early embryo develops within the womb.
- understand the basic molecular mechanism behind different modes of differentiation.
- comprehend how various organ development takes place.

BT14030 - THEORY COURSE CONTENT			
	(4 Credits)		
UNIT 1	Gametogenesis and FertilizationDefinition, scope & historical perspective of development Biology,Gametogenesis –Spermatogenesis, OogenesisFertilization - Definition, mechanism, types of fertilization.Different types of eggs on the basis of yolk.	10 Lectures	
UNIT 2	Early embryonic development Cleavage: Definition, types, patterns & mechanism Blastulation: Process, types & mechanism Gastrulation: Morphogenetic movements– epiboly, emboly, extension, invagination, convergence, de-lamination. Formation & differentiation of primary germ layers, Fate Maps in early embryos.	20 Lectures	
UNIT 3	Embryonic Differentiation Differentiation: Cell commitment and determination- the epigenetic landscape: a model of determination and differentiation, control of differentiation at the level of genome, transcription and post-translation level Concept of embryonic induction: Primary, secondary & tertiary embryonic induction, Neural induction and induction of vertebrate lens.	20 Lectures	
UNIT 4	Organogenesis Neurulation, notogenesis, development of vertebrate eye. Fate of different primary germlayers Development of behaviour: constancy & plasticity, Extra embryonic membranes, placenta in Mammals.	10 Lectures	

BT14040 - LAB COURSE CONTENT

(2 Credits)

- 1. Observation of living and plastic-embedded chick embryos.
- 2. Identification of permanent chick embryo slides.
- 3. Preparation of temporary mounts of 24, 48, 72, and 96 hours chick embryos.
- 4. Effect of caffeine on embryonic chick heart rate.
- 5. The effects of lead acetate on the neural development of chick embryos (Demonstartion of C. elegens).

- P S Verma & V K Agarwal, Chordate Embryology Developmental Biology, S. Chand Publishers, ISBN: 9788121902618
- S.F Gilbert & M.J.F Barresi, Developmental Biology, 11 th Edition, Sinauer Associates Inc. ISBN: 9781605356044
- B. I Balinsky, B.C Fabian, An Introduction to embryology 5th edition (2012), Cengage India, ISBN: 978-8131517499

SEMESTER 5

DISCIPLINE SPECIFIC ELECTIVE PAPER 3

PLANT BIOTECHNOLOGY

Course Objectives:

- To impart fundamental knowledge to students about theoretical aspects and applications of plant tissue culture and plant genomics in addition to that course also impart knowledge of plant molecular biology and transgenic plants
- To acquire adequate knowledge & necessary skills related to the different techniques involved in tissue culture and plant genetic engineering.

Course Outcome:

- Understand basic techniques and applications of plant tissue culture.
- Gain knowledge about structural biology of plants molecules.
- Will be able to understand about application of molecular biology in creating transgenic plants.

BT14050 - THEORY COURSE CONTENT		
(4 Credits)		
	Plant tissue culture	
	Introduction and History of plant tissue culture, Laboratory organization	
	Types of media Nutrient Supplements and Growth Regulators: Media	
TINITT1	Composition and Preparation of commonly used media, Inorganic salts,	15
	Carbon source, Vitamins, Amino acids and Plant growth regulators and culture	Lectures
	conditions: Basal media, growth regulators. Suitable nutrient medium	
	preparation, Hormone physiology and signal Transduction, Totipotency and	
	cyto-differentiation.	
	Basic techniques require for tissue culture and types of in vitro cultures	
LINIT?	Basic Techniques: Selection and Sterilization of Explants, Transfers explants	15
UNI12	onto culture medium, Growing the culture, Regeneration of plantlets, Transfer	Lectures
	of plantlets for hardening.	
	Types of <i>in vitro</i> culture	15 Lectures
	Types of <i>in vitro</i> cultures (in brief) – Culture types and their application: Cell	
	suspension culture, protoplast culture, embryo culture, Meristem culture,	
UNIT3	Callus induction and growth; Organ culture, Root culture, Shoot tip culture,	
	Leaf culture, Flower culture, Ovary and Ovule culture, Haploid culture,	
	Embryo culture; Anther, Pollen and Endosperm culture and Orchid	
	propagation. organogenesis, somatic embryogenesis, Microprapogation.	
	Recombinant DNA and Gene transfer technology	
	Gene transfer technology: Vector mediated gene transfer and Virus mediated	
UNIT4	gene transfer- Direct DNA transfer, Chemical gene transfer. DNA vectors use	
	for plant transformation, Marker gene for plant transformation: Reporter gene,	15
	Selectable marker genes, Antibiotic resistance gene. Agrobacterium mediated	Lectures
	transformation; Gene transfer by biolistics method; Transient expression, Site	
	specific recombination in plants, Particle Bombardment	

BT14060 - LAB COURSE CONTENT

(2 Credits)

- 1. Preparation of commonly used Plant Tissue Culture Media (MS-medium, Minimum media)
- 2. Explant preparation and surface sterilization
- 3. In Vitro culture of suitable Explants for induction of callus` qqq
- 4. Sub culturing and growth studies of callus
- 5. Shoot and root growth study from in vitro raised cultures of plant
- 6. Extraction and purification of genomic DNA from developing tissue by CTAB method.
- 7. Meristem Tip cultures for production of Virus free Sugarcane plant (Demonstration)
- 8. Isolation and fusion of protoplast by enzymatic method

- Pullaiah, T., Rao, M.S. and Sreedevi, E., 2017. Plant Tissue Culture: Theory & Practicals 2nd Ed. Scientific Publishers.
- 2. Stewart Jr, C.N. ed., 2016. Plant biotechnology and genetics: principles, techniques, and applications. John Wiley & Sons.
- 3. Chawla, H., 2011. Introduction to plant biotechnology (3/e). CRC Press.
- 4. Reinert, J., 1977. Anther culture: haploid production and its significance. Applied and fundamental aspects of plant cell, tissue, and organ culture., pp.251-267.
- 5. Gamborg, O.L. and Phillips, G.C., 1995. Sterile techniques. Plant Cell, Tissue and Organ Culture: Fundamental Methods, pp.35-42.
- 6. Kumar, U. and Kumar, U., 2011. Methods in plant tissue culture. Agrobios (India).

SEMESTER 5

DISCIPLINE SPECIFIC ELECTIVE PAPER 4

DAIRY SCIENCE AND TECHNOLOGY

Course Objectives:

The objectives of this course are:

- To introduce students to processing of milk and its products
- To provide students with information about the importance of quality control in dairy science
- To gain a familiarity with the chemistry and biochemistry of milk from species of global importance.

Course Outcome:

- develop a comprehensive understanding of Milk processing and dairy Products manufacturing
- acquire adequate knowledge & necessary skills related to the dairy processing

BT14070 - THEORY COURSE CONTENT			
	(4 Credits)		
	MILK CHEMISTRY		
	Definition and Composition of milk		
	Constituent of Milk		
	Factors affecting quality and quantity of milk		
	Nutritive value of milk		
TINITT1	Physico – Chemical properties of milk		
UNIII	Types of milk (Flavored Milk, Toned & double toned milk, Recombined &	15	
	Reconstituted milk, Sterilized milk, Imitation milk)		
	Common micro-organism found in milk		
	Source of microbial contamination of milk		
	Biochemical activities of microorganisms in milk: Fermentation of milk -		
	desirable and undesirable		
	MILK MICROBIOLOGY	15	
	Spoilage of milk: Succession of microorganisms in milk, leading to spoilage,		
	Color and flavor defects, Sweet curdling, Stormy fermentation, Ropiness		
	Microbial analysis of milk: Dye reduction test, Total bacterial count, Brucella		
	ring test and tests for mastitis, Somatic cell count		
	Milk borne diseases		
UNITZ	Clean milk production		
	Sources of contamination		
	Adulteration of Milk		
	Applications of microbial enzymes in dairy industry [Protease, Lipases]		
	Utilization and disposal of dairy by-product – whey		
	Treatment schemes for effluents of dairy		
	Milk Processing& preservation of milk: Principles and practices for		
UNIT3	production of high quality milk	15	
	Milk collection, Transportation, Grading, weighing and cooling of milk		
L	1		

	Strainer and Straining of milk/Filter and Filtration of milk	
	Clarifier and clarification of milk	
	Cream separator and separation	
	Standardization	
	Pasteurization	
	Homogenization	
	Sterilization	
	Aseptic packaging	
	Production of dairy products	
	Fermented Dairy products - Cheddar, cheese (example of soft and hard	
	cheese), ripened and unripened cottage cheese, Curd, yoghurt,. Probiotic dairy	
TINITA	products	15
01114	Fat Rich Dairy Products: Different types of cream, butter, margarine, fat	
	Frozen Milk Products: Ice-cream and other frozen desserts	
	Concentrated and Dried Milk Products: Condensed milk. Whole milk powder	
	Skim milk powder.	
	BT14080 - LAB COURSE CONTENT	
	(2 Credits)	
1. Meth	ylene blue reduction (MBR) test.	
2. To perform Standard plate count (SPC) from milk sample		
3. Determination of acidity, pH, specific gravity and fat content of different milk Samples		
4. Determination and comparison of SNF (Solid Not Fat) and TS (Total Solid) of milk Samples		
5. Isolation and characterization of lactic acid bacteria from Curd.		
6. Visit to a Dairy Industry		
SUGGESTED READING		

- 1. Vishweshwar, K., Krishnaiah, N. and Sunder, P.R., 2005. Quality control of milk and processing. *Ed. Reddy, S. Andra, Pradesh, India*.
- National Dairy Regulation and Code Processing Sector Interpretive Guidelines Revised March 2006.
- 3. ILRI Training Manual 1 Rural Dairy sTechnology C.B. O'Connor.
- 4. Fernandes, R. ed., 2009. Microbiology handbook: dairy products. Royal Society of Chemistry.
- 5. Tamime, A.Y. ed., 2009. Milk processing and quality management. John Wiley & Sons.
- Jay, J.M., Loessner, M.J. and Golden, D.A., 2008. Modern food microbiology. Springer Science & Business Media.
- 7. Bylund, G., 2003. Dairy processing handbook. Tetra Pak Processing Systems AB.
- 8. Experimental Microbiology, by Rakesh J. Patel and Kiran R, Patel. Published by Aditya, Ahmedabad, Gujarat.