## VANITA VISHRAM WOMEN'S UNIVERSITY

(Managed By: Vanita Vishram, Surat) 1<sup>st</sup> Women's University of Gujarat



VANITA VISHRAM WOMEN'S UNIVERSITY

SURAT

# SCHOOL OF SCIENCE AND TECHNOLOGY

# DEPARTMENT OF BIOTECHNOLOGY B.SC. BIOTECHNOLOGY SEMESTER 2

SYLLABUS AS PER NEP-2020 W.E.F 2023-24



### VANITA VISHRAM WOMEN'S UNIVERSITY, SURAT SCHOOL OF SCIENCE AND TECHNOLOGY Department of Biotechnology BSc Biotechnology Program FY B.Sc.

### Semester II

**BTM203-1C: Introduction to Biotechnology** 

**Credit** 3 + 1

Contact Hour per week 3+2

| Course type              | Theory/Practical                                                              |  |  |
|--------------------------|-------------------------------------------------------------------------------|--|--|
| Purpose of Course        | The Purpose of the course is to make students knowledgeable regarding         |  |  |
|                          | the basics of Biotechnology, its applications and role in various fields, and |  |  |
|                          | current status of this field in India.                                        |  |  |
| Course Objective         | CO 1: To impart students with knowledge on what is Biotechnology, its         |  |  |
|                          | various aspects and the scenario of Biotechnology field in India.             |  |  |
|                          | CO 2: To expose students with various fields and scopes of biotechnology.     |  |  |
|                          | CO 3: To make students understand regarding the roles and application of      |  |  |
|                          | Biotechnology in field of healthcare.                                         |  |  |
| Minimum weeks            | 15 (Including Class work, examination, preparation, holidays etc.)            |  |  |
| per Semester             |                                                                               |  |  |
| Last Review /            | Dec 2023                                                                      |  |  |
| Revision                 |                                                                               |  |  |
| Pre-requisite            | Elementary knowledge of Biology.                                              |  |  |
| Teaching                 | Class Room Teaching, Discussion and Assignment                                |  |  |
| Methodology              |                                                                               |  |  |
| <b>Evaluation Method</b> | 50% Comprehensive Continuous Evaluation (CCE)                                 |  |  |
|                          | 50% Semester End Examination (SEE)                                            |  |  |



### **Course Content**

| Units | Particulars                                            | %         | Minimum |
|-------|--------------------------------------------------------|-----------|---------|
|       |                                                        | Weightage | Nos. of |
|       |                                                        | of Unit   | Hours   |
| 1     | Understanding Biotechnology                            | 45%       | 20      |
|       | Definitions of Biotechnology                           |           |         |
|       | History of Biotechnology                               |           |         |
|       | Traditional and Modern Biotechnology                   |           |         |
|       | Biotechnology-three component central role             |           |         |
|       | Biotechnology-an Interdisciplinary Pursuit             |           |         |
|       | • Branches of Biotechnology; Plant, Animal             |           |         |
|       | Biotechnology, Marine Biotechnology, Industrial        |           |         |
|       | Biotechnology, Medical Biotechnology, Environmental    |           |         |
|       | Biotechnology.                                         |           |         |
|       | Biotechnology in India                                 |           |         |
|       | • Biotechnology Research in India. DBT and Other State |           |         |
|       | Agencies (GSBTM).                                      |           |         |
|       | • Biotechnology Institutions in India (Autonomous,     |           |         |
|       | Public and Private Sector)                             |           |         |
|       | • Biotech Success Stories- Biocon, Sea6 Energy, Bharat |           |         |
|       | Biotech                                                |           |         |
|       | • BTIS-NET                                             |           |         |
|       | • ABLE & BIRAC                                         |           |         |
|       | • Role of CSIR and ICAR in Biotechnology Research      |           |         |
| 2     | Applications of Biotechnology                          | 35%       | 15      |
|       | Recombinant DNA Technology and Genetic                 |           |         |
|       | Engineering                                            |           |         |
|       | • Applications of Biotechnology in Agriculture:        |           |         |
|       | <ul> <li>Genetically modified food crops</li> </ul>    |           |         |
|       | • Example: GM Tomato, Golden Rice etc.                 |           |         |
|       | • BT Crops (BT Cotton and BT Brinjal: Insect           |           |         |
|       | Resistant, Plants: Pros and Cons)                      |           |         |
|       | Biofertilizers                                         |           |         |
|       | Biopesticides                                          |           |         |
|       | • Biofuels                                             |           |         |
| 3     | Biotechnology in healthcare                            | 20%       | 10      |
|       | Vaccines                                               |           |         |
|       | • DNA & RNA probes,                                    |           |         |
|       | Monoclonal Antibodies                                  |           |         |
|       | • Autoantibodies,                                      |           |         |
|       | • Identification of gene causing genetic diseases,     |           |         |



| विका या विमुक्तवे |   |                                                 | <br> |
|-------------------|---|-------------------------------------------------|------|
|                   | ٠ | Therapeutic molecules from recombinant and non- |      |
|                   |   | recombinant organisms (Insulin, human growth    |      |
|                   |   | hormone, interferon etc.)                       |      |
|                   | • | Gene Therapy                                    |      |
|                   | 0 |                                                 |      |

### List of References & Text Books:

- John Smith (2005) Biotechnology, 5th Edition.
- Ratledge, C. & Kristiansen, B. (2006) Basic Biotechnology, Cambridge University Press.
- Gupta, P. K. (2005) Elements of Biotechnology, Rastogi Publications.
- William Thieman and Michael Palladino (2012). Introduction to Biotechnology (3rd Edition), Benjamin Cummings Publishing Company.
- B. D. Singh, Biotechnology (2018), Kalyani publishers
- R.C. Dubey, A Textbook Of Biotechnology (2016) 6th Edition, S Chand publications
- U Satyanarayana, Biotechnology (2020), Publishers: Books & Allied Ltd
- Biotechnology by Keshav Trehan
- Biotechnology: The biological principles M. D. Trevan, S. Boffey, K. H. Goulding & P. Stanbury, Open University Press, Milton Keynes, 1987
- Sobti and Pachauri (2009) Essential of Biotechnology, Ane Books Pvt. Ltd. ISBN-81- 8052-160-5
- DBT website: http://dbtindia.gov.in.

#### **Practicals:**

- 1. Laboratory practices and ethical issues in biotechnology
- 2. Demonstration of operation and applications of important instruments (autoclave, incubator, hot air oven, laminar airflow, Colorimeter, bacteriological filter assembly) used in the biotechnology laboratory.
- 3. Demonstrate principal and function of centrifuge.
- 4. Case study of green revolution and its impact.
- 5. Case study of white revolution and its importance.
- 6. Calibration, working and use of pH meter.
- 7. Demonstration of access of NCBI and DBT website for various information.

#### **References & Textbooks for Practicals**

- Patel, R. J., & Patel, R. K., (2015). Experimental Microbiology, Vol. 1, 9th ed., Aditya.
- Cell and Molecular Biology: A Lab Manual. K.V. Chaitanya, PHI Learning Private Ltd.
- Introduction to practical Biochemistry, David Plummer, Tata McGraw Hill Publishing Company.



### **COURSE OUTCOMES:**

| CO 1. | Students will have gain knowledge about origin and detail knowledge about different field |
|-------|-------------------------------------------------------------------------------------------|
|       | in biotechnology and its resources in India                                               |
| CO 2. | Students will achieve brief information about application in Bioinformatics               |
| CO 3. | Students will aware about use of Biotechnology in health science and its research.        |

### Upon successful completion of the course,

#### COURSE OUTCOMES MAPPING

| Unit No. | Title of the Unit             | Course Ou | itcomes |      |
|----------|-------------------------------|-----------|---------|------|
|          |                               | CO 1      | CO 2    | CO 3 |
| 1        | Understanding Biotechnology   |           |         |      |
| 2        | Applications of Biotechnology |           |         |      |
| 3        | Biotechnology in healthcare   |           |         |      |

#### COURSE ARTICULATE MATRIX

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 |
|-----|------|------|------|------|------|------|
| CO1 |      |      |      |      |      |      |
| CO2 |      |      |      |      |      |      |
| CO3 |      |      |      |      |      |      |



### VANITA VISHRAM WOMEN'S UNIVERSITY, SURAT SCHOOL OF SCIENCE AND TECHNOLOGY Department of Biotechnology BSc Biotechnology Program FY B.Sc. Semester II

#### **BTM204-1C: Biomolecules: Structures & Functions**

Credit 3+1

Contact Hour per week 3+2

| Course type              | Theory/Practical                                                          |  |  |
|--------------------------|---------------------------------------------------------------------------|--|--|
| <b>Purpose of Course</b> | Provide strong fundamentals of structures, functions and organizations of |  |  |
|                          | biomolecules in biological systems.                                       |  |  |
| <b>Course Objective</b>  | CO 1. Demonstrate knowledge and understanding of the molecular            |  |  |
|                          | machinery of biomolecules that make living cells                          |  |  |
|                          | CO 2. Demonstrate knowledge and understanding of the principles that      |  |  |
|                          | govern the structures of biomolecules                                     |  |  |
|                          | CO 3. To develop the ability to think critically about Structural and     |  |  |
|                          | functional moieties of different biomolecules                             |  |  |
| Minimum weeks            | 15 (Including Class work, examination, preparation, holidays etc.)        |  |  |
| per Semester             |                                                                           |  |  |
| Last Review /            | June 2023                                                                 |  |  |
| Revision                 |                                                                           |  |  |
| Pre-requisite            | Elementary knowledge of Biology.                                          |  |  |
| Teaching                 | Class Room Teaching, Discussion and Assignment                            |  |  |
| Methodology              |                                                                           |  |  |
| <b>Evaluation Method</b> | 50% Comprehensive Continuous Evaluation (CCE)                             |  |  |
|                          | 50% Semester End Examination (SEE)                                        |  |  |



**Course Content** 

| Units | Particulars                                               | %         | Minimum |
|-------|-----------------------------------------------------------|-----------|---------|
|       |                                                           | Weightage | Nos. of |
|       |                                                           | of Unit   | Hours   |
| 1     | Amino acids:                                              | 33        | 15      |
|       | Structures and Classification of Amino acids              |           |         |
|       | Chemical & physical properties of amino acids             |           |         |
|       | Non-standard amino acids                                  |           |         |
|       | • Zwitter ion and isoelectric point                       |           |         |
|       | Amino acids as drugs                                      |           |         |
|       | Proteins                                                  |           |         |
|       | • Types of proteins and their classification              |           |         |
|       | • Forces stabilizing protein structure and shape          |           |         |
|       | • Different Level of structural organization of proteins  |           |         |
| 2     | Carbohydrate: Structure & Functions:                      | 33        | 15      |
|       | • Definition, Classification, Biological function,        |           |         |
|       | • Structural Characteristics of Carbohydrates: Isomers,   |           |         |
|       | Epimers, Enantiomers, Mutarotation                        |           |         |
|       | • Monosaccharides: Structural aspects (Open chain and     |           |         |
|       | closed chain), types and chemical reactions of Glucose    |           |         |
|       | • Disaccharides: Reducing and non-reducing sugars,        |           |         |
|       | Structure of sucrose and lactose                          |           |         |
|       | Polysaccharides: Homopolysaccharides &                    |           |         |
|       | Heteropolysaccharides                                     |           |         |
|       | • Mucopolysaccharides, Bacterial cell wall                |           |         |
|       | biological functions                                      |           |         |
|       |                                                           |           |         |
|       | <ul> <li>Structures &amp; Functions of Lipids</li> </ul>  |           |         |
|       | <ul> <li>Classification of Lipids</li> </ul>              |           |         |
|       | Nomenclature of Lipids                                    |           |         |
|       | • Properties of different types of Lipids: Fatty acids.   |           |         |
|       | triacylglycerols, phospholipids, Glycolipids,             |           |         |
|       | lipoproteins, cerebrosides, gangliosides, Prostaglandins, |           |         |
|       | Cholesterol, steroids and amphipathic lipids              |           |         |
| 3     | Nucleic acid:                                             | 33        | 15      |
|       | • Types Functions of Nucleic acids: DNA and RNA           |           |         |
|       | Purines & Pyrimidines                                     |           |         |
|       | Nucleosides & Nucleotides                                 |           |         |
|       | Biologically important nucleotides                        |           |         |
|       | • Double helical model of DNA structure                   |           |         |
|       | • Various structural configurations of DNA: A, B & Z      |           |         |



|    | Vera e liger                                                                                 |  |  |
|----|----------------------------------------------------------------------------------------------|--|--|
|    | Physical & chemical properties of Nucleic acids                                              |  |  |
|    | Structural characteristics of RNA                                                            |  |  |
|    | Vitamins:                                                                                    |  |  |
|    | Nomenclature and classification of vitamins                                                  |  |  |
|    | • Occurrence and biological functions of – Fat soluble and                                   |  |  |
|    | water-soluble vitamins.                                                                      |  |  |
| Li | st of References & Text Books:                                                               |  |  |
| •  | U Satyanarayanan 6th Edition, Biochemistry Elsevier Health Sciences. 2019                    |  |  |
| •  | David L. Nelson, Michael Cox, Aaron Hoskins, Lehninger's Principles of Biochemistry          |  |  |
|    | MacMillan Learning. 2021                                                                     |  |  |
| •  | Berg, J. M., Tymoczko, J. L. and Stryer, L. Biochemistry. VI Edition. W.H Freeman and Co.    |  |  |
|    | 2006.                                                                                        |  |  |
| •  | Voet & Voet, Biochemistry Jhon Willey and sons.2021                                          |  |  |
| •  | Lubert Stryer, 9th Edition, Biochemistry, W H freeman                                        |  |  |
| Pr | acticals:                                                                                    |  |  |
| 1. | Qualitative tests for Carbohydrates                                                          |  |  |
| 2. | 2. Quantitative estimation of free amino acids in biological samples by Ninhydrin method.    |  |  |
| 3. | . Qualitative tests for proteins.                                                            |  |  |
| 4. | . Qualitative tests for Lipids: Determination of acid value, iodine value and saponification |  |  |
|    | values of fats & oils.                                                                       |  |  |
| 5. | Biochemical and spectrophotometric estimations of DNA.                                       |  |  |
| 6. | . Biochemical and spectrophotometric estimations of RNA.                                     |  |  |
| 7. | Estimation of vitamin A or vitamin E by colorimetric assay                                   |  |  |
| Re | ferences & Textbooks for Practicals                                                          |  |  |
| •  | Rakesh Patel. Experimental Microbiology. Volume                                              |  |  |
| •  | S. K. Sawhney, Randhir Singh, Introductory Practical Biochemistry, Alpha Science             |  |  |
|    | International. 2005.                                                                         |  |  |
| •  | David T. Plummer, 3rd Edition. An introduction to Practical biochemistry, McGraw Hill        |  |  |
|    | Education Pvt Ltd. 2017.                                                                     |  |  |

• Sawhney & Singh. Introductory Practical Biochemistry. Updated edition



### VANITA VISHRAM WOMEN'S UNIVERSITY, SURAT SCHOOL OF SCIENCE AND TECHNOLOGY **Department of Biotechnology BSc Biotechnology Program** FY B.Sc.

Semester-II **BTE202-1C: Cell Biology (T)** 

Credit **3+1**  **Contact Hour per week** 3+2

| Course type              | Theory/Practical                                                         |  |  |  |
|--------------------------|--------------------------------------------------------------------------|--|--|--|
| <b>Purpose of Course</b> | Provide strong fundamentals of eukaryotic cell structures, their         |  |  |  |
|                          | organization, division and the roles of organelles in various metabolic  |  |  |  |
|                          | aspects of the cell.                                                     |  |  |  |
| Course Objective         | CO 4. To demonstrate knowledge and understanding of the eukaryotic       |  |  |  |
|                          | cells.                                                                   |  |  |  |
|                          | CO 5. To make the students aware of structural organization of various   |  |  |  |
|                          | cellular organelles and understanding of the roles of various            |  |  |  |
|                          | organelles in cellular metabolism.                                       |  |  |  |
|                          | CO 6. To demonstrate how the cell division progress and regulated inside |  |  |  |
|                          | the body.                                                                |  |  |  |
| Minimum weeks            | 15                                                                       |  |  |  |
| per Semester             |                                                                          |  |  |  |
| Last Review /            | June 2023                                                                |  |  |  |
| Revision                 |                                                                          |  |  |  |
| Pre-requisite            | Elementary knowledge of Biology.                                         |  |  |  |
| Teaching                 | Class Room Teaching, Discussion and Assignment                           |  |  |  |
| Methodology              |                                                                          |  |  |  |
| <b>Evaluation Method</b> | Continuous And Comprehensive Evaluation (CCE) (50%)                      |  |  |  |
|                          | Semester End Evaluation (SEE) (50%)                                      |  |  |  |



#### **Course Content**

| Units               | Particulars                                                                     | %             | Minimum   |
|---------------------|---------------------------------------------------------------------------------|---------------|-----------|
|                     |                                                                                 | Weightage     | Nos. of   |
|                     |                                                                                 | of Unit       | Hours     |
| 1                   | Introduction to Cell Biology                                                    | 45            | 20        |
|                     | Origin and Evolution of Cells                                                   |               |           |
|                     | Endosymbiont Theory                                                             |               |           |
|                     | Cell Diversity                                                                  |               |           |
|                     | Cell Theory                                                                     |               |           |
|                     | Basic Properties of cells                                                       |               |           |
|                     | Structure and Function of Cell Components                                       |               |           |
|                     | • Eukaryotic cell wall                                                          |               |           |
|                     | Plasma Membrane                                                                 |               |           |
|                     | • Nucleus                                                                       |               |           |
|                     | Mitochondria                                                                    |               |           |
|                     | Chloroplast and other Plastids                                                  |               |           |
|                     | Endoplasmic Reticulum                                                           |               |           |
|                     | Golgi Complex                                                                   |               |           |
| 2                   | Structure and Function of Cell Components                                       | 33            | 15        |
|                     | • Lysosomes                                                                     |               |           |
|                     | Peroxisomes                                                                     |               |           |
|                     | • Cytoskeleton                                                                  |               |           |
|                     | Microtubules                                                                    |               |           |
|                     | Intermediate Filaments                                                          |               |           |
|                     | Microfilaments                                                                  |               |           |
|                     | Centrosomes                                                                     |               |           |
| 3                   | Extracellular Matrix and Cell Interactions                                      | 22            | 10        |
|                     | • ECM: (Matrix Structural Proteins, Polysaccharides,                            |               |           |
|                     | Adhesion Proteins)                                                              |               |           |
|                     | Cell-matrix Interactions                                                        |               |           |
|                     | • Cell-cell Interactions (Adhesion Junctions, Tight                             |               |           |
|                     | Junctions, Gap Junctions, Plasmodesmata)                                        |               |           |
|                     | Cell Cycle, Regulation & Cell Division                                          |               |           |
|                     | • Cell cycle: Overview, Phases, Regulation & Control of                         |               |           |
|                     | cell cycle                                                                      |               |           |
|                     | • Overview and basic steps of Mitosis                                           |               |           |
|                     | Overview and basic steps of Meiosis                                             |               |           |
|                     | Genetic recombination during Meiosis                                            |               |           |
| List of Re          | ferences & Text Books:                                                          |               |           |
| • Karp, G<br>ISBN-9 | G. (2016). Cell and molecular biology: concepts and experimen 978-1-118-88614-4 | ts. John Wile | y & Sons, |
| Cooper              | r, G. M., & Hausman, R. E. (2004). The cell: a molecular appro                  | ach. ISBN-08  | 378932143 |

- Verma, P. S., & Agarwal, V. K. (2004). Cell Biology, Genetics, Molecular Biology, Evolution and Ecology: Evolution and Ecology. S. Chand Publishing. ISBN-978-8121924429
- John P. Harley, Donald A. Klein, Microbiology- Lansing Prescott, 10th Edition, Mcgraw Hill Publication. ISBN-13-978-1259281594

### Practicals:

- 1. To visualize animal and plant cell using methylene blue.
- 2. To study viability of cells using trypan blue/phenol red.
- 3. To perform Staining of DNA by Schiff's reagent using onion peel.
- 4. To study Lipid solubility of membranes using hypotonic solution and RBCs.
- 5. To study mitosis in onion root tips.
- 6. To observe Barr body from buccal smear.
- 7. To perform Giemsa staining of blood cells.
- 8. Demonstration of preparation of nuclear, mitochondrial and cytoplasmic fractions.

#### **References & Textbooks for Practicals**

• Cell and Molecular Biology: A Lab Manual. K.V. Chaitanya, PHI Learning Private Ltd.

### **COURSE OUTCOMES:**

| CO 1. | Students will have gain knowledge about origin and evolution of cells and their important |
|-------|-------------------------------------------------------------------------------------------|
|       | properties.                                                                               |
| CO 2. | Students will achieve brief information and understanding about various components of     |
|       | cells, and their functional and structural analysis                                       |
| CO 3. | Students will be able to study cell-cell interaction techniques, cell division and cell   |
|       | regulations                                                                               |

#### COURSE OUTCOMES MAPPING

| Unit No. | Title of the Unit              | Course Outcomes |      |      |
|----------|--------------------------------|-----------------|------|------|
|          |                                | CO 1            | CO 2 | CO 3 |
| 1        | Introduction to cell Biology   |                 |      |      |
| 2        | Structure and function of cell |                 |      |      |
|          | components                     |                 |      |      |
| 3        | Extracellular Matrix and Cell  |                 |      |      |
|          | Interactions & Cell Cycle,     |                 |      |      |
|          | Regulation & Cell Division     |                 |      |      |

#### COURSE ARTICULATE MATRIX

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 |
|-----|------|------|------|------|------|------|
| CO1 |      |      |      |      |      |      |
| CO2 |      |      |      |      |      |      |
| CO3 |      |      |      |      |      |      |



### VANITA VISHRAM WOMEN'S UNIVERSITY, SURAT SCHOOL OF SCIENCE AND TECHNOLOGY Department of Biotechnology Environmental studies FY B.Sc./B.A./B.Com./B.C.A./B.Voc/B.B.A Semester II VAC201-1C: Environmental studies

Credit 2

Contact Hour per week 2

| Course type              | Theory                                                                   |  |  |  |  |  |
|--------------------------|--------------------------------------------------------------------------|--|--|--|--|--|
| <b>Purpose of Course</b> | The students need to learn basic concepts of environment. How            |  |  |  |  |  |
|                          | environment impact our life on earth and which activities are harmful to |  |  |  |  |  |
|                          | our environment and how we can contribute to wellbeing of our earth and  |  |  |  |  |  |
|                          | environment.                                                             |  |  |  |  |  |
| Course Objective         | CO 1. To develop the understanding basics concept of our environment     |  |  |  |  |  |
|                          | and its sustainable development.                                         |  |  |  |  |  |
|                          | CO 2. Demonstrate knowledge and understanding different component of     |  |  |  |  |  |
|                          | environment.                                                             |  |  |  |  |  |
|                          | CO 3. Demonstrate knowledge and understanding of the ecosystem and its   |  |  |  |  |  |
|                          | functioning and impact on survival of organism on earth.                 |  |  |  |  |  |
|                          | CO 4. To develop the ability to think critically about sustainable       |  |  |  |  |  |
|                          | development of our earth environment.                                    |  |  |  |  |  |
| Minimum weeks            | 15 (Including Class work, examination, preparation, holidays etc.)       |  |  |  |  |  |
| per Semester             |                                                                          |  |  |  |  |  |
| Last Review /            | Dec 2023                                                                 |  |  |  |  |  |
| Revision                 |                                                                          |  |  |  |  |  |
| Pre-requisite            | 10+2                                                                     |  |  |  |  |  |
| Teaching                 | Class Room Teaching, Discussion and Assignment                           |  |  |  |  |  |
| Methodology              |                                                                          |  |  |  |  |  |
| <b>Evaluation Method</b> | 50% Comprehensive Continuous Evaluation (CCE)                            |  |  |  |  |  |
|                          | 50% Semester End Examination (SEE)                                       |  |  |  |  |  |



#### **Course Content**

| Units | Particulars                                                                  | %         | Minimum |
|-------|------------------------------------------------------------------------------|-----------|---------|
|       |                                                                              | Weightage | Nos. of |
|       |                                                                              | of Unit   | Hours   |
| 1     | Introduction of Environment                                                  | 25        | 8       |
|       | • Definition and multidisciplinary nature of environmental                   |           |         |
|       | studies.                                                                     |           |         |
|       | • Concept and Components of environment (Atmosphere,                         |           |         |
|       | Lithosphere and Hydrosphere)                                                 |           |         |
|       | Bio-geochemical cycles                                                       |           |         |
|       | • Concept, structure and function of an ecosystem.                           |           |         |
|       | • Food chains, food webs and Energy flow in an ecosystem                     |           |         |
|       | • Terrestrial ecosystem: Forest ecosystem and Grassland                      |           |         |
|       | ecosystem                                                                    |           |         |
|       | Aquatic ecosystems: Pond and ocean ecosystem                                 |           |         |
| 2     | Natural Resources: Renewable and Non-renewable                               | 25        | 8       |
|       | Resources                                                                    |           |         |
|       | • Land as a resource, soil erosion and land degradation,                     |           |         |
|       | landslides, and desertification                                              |           |         |
|       | • Forests: Use and over-exploitation, deforestation,                         |           |         |
|       | • Impacts of deforestation on biodiversity and tribal                        |           |         |
|       | populations.                                                                 |           |         |
|       | • Energy resources: Renewable and non-renewable energy                       |           |         |
|       | sources, use of alternate energy sources, growing energy                     |           |         |
|       | needs.                                                                       |           |         |
| 3     | Biodiversity and its Conservation                                            | 25        | 7       |
|       | • Introduction — Definition, ecosystem diversity, Value of                   |           |         |
|       | biodiversity,                                                                |           |         |
|       | • India as a mega-biodiversity nation;                                       |           |         |
|       | • Threats to biodiversity: Habitat loss, poaching of wildlife,               |           |         |
|       | Endengered and endemic species of India Common plant                         |           |         |
|       | • Endangered and endernic species of india. Common plant and animal species. |           |         |
|       | • Conservation of biodiversity: In-situ and Ex-situ                          |           |         |
|       | conservation of biodiversity                                                 |           |         |
| 4     | Environmental pollution                                                      | 25        | 7       |
|       | Definition Causes, effects and control measures of:                          |           |         |
|       | • Air pollution                                                              |           |         |
|       | • Water pollution                                                            |           |         |
|       | Soil pollution                                                               |           |         |
|       | • Marine                                                                     |           |         |

- Noise pollution
- Thermal pollution
- Nuclear hazards

### List of References & Text Books:

- Bharucha, E. (2013). Textbook of Environmental Studies for Undergraduate Courses. Universities Press.
- Asthana, D. K. (2006). Text Book of Environmental Studies. S. Chand Publishing.
- Basu, M., Xavier, S. (2016). Fundamentals of Environmental Studies, Cambridge University Press, India
- Singh, J.S., Singh, S.P. & Gupta, S.R. 2006. Ecology, Environment and Resource Conservation. Anamaya Publications.
- Sodhi, N.S. & Ehrlich, P.R. (Eds). 2010. Conservation Biology for All. Oxford University Press.
- Tiwari, G.N. & Ghosal. M. K. 2005. Renewable Energy Resources: Basic Principles and Application. Narosa Publishing House.
- R. K. Khitoliya., 2012. Environmental Pollution 2nd edition. S. Chand Publishing
- Pepper, I.L., Gerba, C.P. & Brusseau, M.L. 2006. Environmental and Pollution Science. Elsevier Academic Press.
- Purohit, S.S. & Ranjan, R. 2007. Ecology, Environment & Pollution. Agrobios Publications.

### **COURSE OUTCOMES:**

| CO 1. | Students will gain knowledge about Earth structure and its environment and ecology      |  |  |
|-------|-----------------------------------------------------------------------------------------|--|--|
|       | and biodiversity and its role in human welfare and its conservation                     |  |  |
| CO 2. | Students will develop the understanding about various natural resources and their       |  |  |
|       | management.                                                                             |  |  |
| CO 3. | Students will be able to critically examine all sides of environmental issues and apply |  |  |
|       | understanding from various disciplines such as psychology, law, literature, politics,   |  |  |
|       | sociology, philosophy, and religion to create opinions about how to interact with the   |  |  |
|       | environment on both a personal and a social level.                                      |  |  |
| CO 4. | Students will understand the global character of environmental problems and ways of     |  |  |
|       | addressing them, including interactions across local to global scales.                  |  |  |

#### **COURSE OUTCOMES MAPPING**

| Unit No. | Title of the Unit                | Course Outcomes |      |      |      |
|----------|----------------------------------|-----------------|------|------|------|
|          |                                  | CO 1            | CO 2 | CO 3 | CO 4 |
| 1        | Introduction of Environment      |                 |      |      |      |
| 2        | Natural Resources: Renewable and |                 |      |      |      |
|          | Non-renewable Resources          |                 |      |      |      |
| 3        | Biodiversity and Conservation    |                 |      |      |      |
| 4        | Environmental pollution          |                 |      |      |      |