VANITA VISHRAM WOMEN'S UNIVERSITY

(Managed By: Vanita Vishram, Surat)

1st Women's University of Gujarat

SCHOOL OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF BIOTECHNOLOGY B.SC. BIOTECHNOLOGY SEMESTER 3

SYLLABUS AS PER NEP-2020 W.E.F 2023-24

Department of Biotechnology BSc Biotechnology Program SY B.Sc.

Semester III

BTM205-1C: Biomolecules: Metabolism

 $Credit \quad 3+1$

Contact Hour per week 3-

3+2

Course type	Theory/Practical			
Purpose of Course	Provide insights of reactions that occur within cells of living organisms to			
	sustain life. It will also provide the basic fundamentals of process of			
	metabolism which involves many interconnected cellular pathways			
	ultimately provide cells with the energy required to carry out their			
	function.			
Course Objective	CO 1. To introduce students about metabolic pathways of biomolecules			
	ranging from carbohydrates to nucleic acid.			
	CO 2. To make the students understand the chemical processes that takes			
	place inside the cells of living organisms which are necessary maintain life.			
	CO 3. To make the students aware about the disorders associated with abnormal metabolism.			
Minimum weeks	15 (Including Class work, examination, preparation, holidays etc.)			
per Semester	r Semester			
Last Review /	June 2023			
Revision				
Pre-requisite	Basic knowledge of biochemistry.			
Teaching	Class Room Teaching, Discussion and Assignment			
Methodology	thodology			
Evaluation Method	50% Comprehensive Continuous Evaluation (CCE)			
	50% Semester End Examination (SEE)			

Course Content

Units	Particulars	%	Minim
		Weight	um
		age of	Nos. of
		Unit	Hours
1	Introduction:	27	12
	• Introduction to Metabolism: Types (Anabolism, catabolism),		
	Integration of metabolism.		
	Gibb's free energy and redox potential		
	ATP and reducing powers		
	Oxidative Phosphorylation		
	Electron Transport Chain		
	Glycolysis		
	Pentose phosphate pathway		
	Citric acid cycle		
	Gluconeogenesis		
2	Nucleic acid & Protein metabolism	45	20
	Purine metabolism: Purine biosynthesis - Denovo pathway &		
	Salvage pathway, catabolism of purine nucleotides.		
	Pyrimidine metabolism: Pyrimidine biosynthesis – Denovo		
	pathway, catabolism of Pyrimidine nucleotides.		
	Protein Metabolism		
	• Introduction to protein metabolism - Transamination and		
	deamination.		
	Metabolism of aromatic amino acids (Phenyl alanine, tyrosine)		
	& tryptophan).		
	Metabolism of sulphur-containing amino acids (cysteine,		
	cystine & methionine)		
	Metabolism of glycine, lysine, serine, glutamine, histidine.		
3	Lipid Metabolism	28	13
	• Introduction to lipid metabolism. Fatty acid biosynthesis:		
	synthesis of		
	• palmitic acid, Fatty acid synthase complex and its significance.		
	Synthesis of triacylglycerol and glycerophospholipids.		
	• Metabolism of cholesterol. β Oxidation of Fatty acids & α		
	Oxidation of Fatty acids.		
	Metabolism of ketone bodies & regulation Lipoprotein		
	metabolism.		

Reference books

- Naik, P., 2011. Essentials of Biochemistry (for Medical Students). JP Medical Ltd.
- Satyanarayana, U., 2013. Biochemistry. Elsevier Health Sciences.
- Fisher, M., 2001. Lehninger principles of biochemistry, ; by David L. Nelson and Michael M.

EFFECTIVE FROM ACADEMIC YEAR 2023-24

- Cox. The Chemical Educator, 6, pp.69-70.
- Kogut, M., 1975. Biochemistry: by Lubert Stryer WH Freeman and Company; San Francisco,
- Murray, K., Rodwell, V., Bender, D., Botham, K.M., Weil, P.A. and Kennelly, P.J., 2009.
- Harper's illustrated biochemistry. 28. Citeseer, New York, United States.

Practicals:

- 1. Qualitative test for amino acids by Sakaguchi reactions.
- 2. Qualitative test for amino acid by Hopkins-Cole test
- 3. Estimation of blood glucose by oxidase method.
- 4. Determination of proteins by Bradford method
- 5. Qualitative test for the presence of fatty acids by titrimetric method.

Department of Biotechnology BSc Biotechnology Program SY B.Sc.

Semester III BTM206-1C: Enzymology

Credit 3+1

Contact Hour per week 3+2

Course type	Theory/Practical		
Purpose of Course	Provide strong fundamentals of structures, functions and organizations of		
	Enzymes in biological systems, Industries and our day to day life.		
Course Objective	CO 1. The catalysts and enzymes; their working patterns, mode of		
	actions, inhibition, kinetics, etc.		
	CO 2. Demonstrate knowledge and understanding of the regulation of		
	Enzyme activity.		
	CO 3. Demonstrate the strategies for the extraction and purification of		
	enzymes & the overview on applications of enzymes.		
Minimum weeks	15 (Including Class work, examination, preparation, holidays etc.)		
per Semester			
Last Review /	June 2023		
Revision			
Pre-requisite	Elementary knowledge of Biology.		
Teaching	Class Room Teaching, Discussion and Assignment		
Methodology			
Evaluation Method	thod 50% Comprehensive Continuous Evaluation (CCE)		
	50% Semester End Examination (SEE)		

Course Content

Units	Particulars	%	Minim
		Weight	um
		age of	Nos. of
		Unit	Hours
1	Introduction to Enzymes	27	12
	Historical perspectives		
	General characteristics of Enzymes. Chemical nature and		
	properties of enzymes		
	Nomenclature and classification		
	Working of enzymes: Activation energy and transition state		
	Specificity of Enzyme Action		
	Mechanism of Enzyme Action		
	Factors affecting enzyme activity		
2	Enzyme Kinetics	45	20
	Derivation of Michaelis-Menten equation for unisubstrate		
	reactions		
	Km and its significance		
	Measurement of Km and Vmax by Lineweaver-Burk plot and		
	other linear transformations of MM equation		
	Bi-substrate reactions: Sequential and ping-pong mechanisms		
	with examples and determination of Km and Vmax for each		
	substrate (derivations excluded)		
	Regulation of Enzyme Activity & Enzyme Inhibition		
	Reversible (competitive, non- competitive, and uncompetitive)		
	and irreversible (affinity labels and suicide inhibitors) enzyme		
	inhibitors; Determination of Ki.		
3	Extraction and Purification of Enzymes	28	13
	Sources for enzyme production		
	Factors affecting source selection of enzyme		
	• Extraction of soluble, membrane bound enzymes (intracellular		
	and extracellular enzymes)		
	Methods of cell disruption		
	Extraction of soluble, membrane bound enzymes		
	Purification of enzymes: preliminary and advanced methods		
	Application of Enzymes		
	• Enzyme utilization in Industry: Food and Drink industries,		
	Artificial kidney machines, other industries (pharmaceutical		
	industry; washing powder manufacturing industries)		
	Immobilization of Enzymes: Methods and Applications		
	• Biosensors		

List of References & Text Books:

- Cox, M.M and Nelson, D.L. (2008). Lehninger's Principles of Biochemistry, Sixth Edition, W.H. Freeman and Co., New York.
- Voet D and Voet J(2012) Biochemistry . Fifth edition, Wiley.
- Murray, R.K., Bender, D.A., Botham, K.M., Kennelly, P.J., Rodwell, V.W. and Well, P.A. (2009). Harper's Illustrated Biochemistry, XXVIII Edition, International Edition, The McGraw-Hill Companies Inc.
- "Enzymes: Biochemistry, Biotechnology, Clinical Chemistry" by Palmer T and P L Bonner
- Applications of Enzyme Biotechnology by Kelly, Jeffrey W., Baldwin, Thomas O. (Eds.)
- Nature of Enzymes by L. Foster
- Keith Wilson and John Walker. 2006.Principles and Techniques of Biochemistry and Molecular Biology 6th edition .Cambridge University Press New York,pp.571-594
- Lubert Stryer. 2007. Biochemistry 6th Edition W.H. Freeman, and Company. New York
- Fundamentals of Enzymologist: Nicholes C. Price and Lewis Stevens, Oxford Univ. Press. List of Open Source Software/learning website:
- http://silveroakuni.ac.in/video-lecture
- https://nptel.ac.in/

Practicals:

- 1. To determine Alkaline phosphatase enzyme activity from sprouted mung bean.
- 2. To study effect of temperature on Alkaline Phosphatase enzyme activity.
- 3. To study effect of pH on Alkaline Phosphatase enzyme activity.
- 4. To study kinetics (Km and Vmax) of alkaline phosphatase enzyme/To study effect of time and substrate concentration on Alkaline Phosphatase enzyme activity.
- 5. Isolation of egg lysozyme by ion exchange chromatography (Demonstration).

Department of Biotechnology BSc Biotechnology Program SY B.Sc.

Semester III

BTM207-2C: General Genetics

Credit 3+1

Contact Hour per week 3+2

Course type	Theory/Practical			
Purpose of Course	Provide strong fundamentals of general genetics including Mendel's law			
	of inheritance their application and genomic organization of prokaryotes			
	and eukaryotes.			
Course Objective	CO 1. To give information and knowledge about basic components of			
	Genetics.			
	CO 2. To make students aware about principle of inheritance and its			
	characteristics.			
	CO 3. To explain the students about various mendelian principles.			
	CO 4. To make students understand about genetic linkage and			
	inheritance.			
	CO 5. To differentiate prokaryotic and eukaryotic chromosome			
	arrangement			
Minimum weeks	15 (Including Class work, examination, preparation, holidays etc.)			
per Semester				
Last Review /	June 2023			
Revision				
Pre-requisite	Basic knowledge of biology.			
Teaching	Class Room Teaching, Discussion and Assignment			
Methodology				
Evaluation Method	50% Comprehensive Continuous Evaluation (CCE)			
	50% Semester End Examination (SEE)			

Course Content

Units	Particulars	%	Minim
		Weight	um
		age of	Nos. of
		Unit	Hours
1	Introduction:	33	14
	Historical developments in the field of genetics;		
	• Mendelian genetics: Mendel's experimental design,		
	monohybrid and di-hybrid crosses, Law of segregation &		
	Principle of independent assortment.		
	Test and back crosses.		
	Allelic interactions: Concept of dominance, incomplete		
	dominance, co-dominance, pseudo-allele, essential and lethal		
	genes.		
	Importance and application of mendelian genetics.		
2	Chromosome and genomic organization:	34	16
	Eukaryotic nuclear genome nucleotide sequence		
	• composition –unique & repetitive DNA, satellite DNA.		
	Centromere and telomere DNA, genes, noncoding DNA.		
	Genetic organization of prokaryotic and viral genome.		
	Chromosome morphology: concept of euchromatin and		
	heterochromatin. packaging of DNA molecule into		
	chromosomes, chromosome banding pattern,		
	Concept of cistron, exons, introns and genetic code		
3	Mutation, sex determination and crossing over	33	15
	Definition and types of mutations, causes of mutations		
	• Variations in chromosomes structure - deletion, duplication,		
	inversion and translocation.		
	Sex determination and sex linkage: Mechanisms of sex		
	determination, Environmental factors and sex determination,		
	Phenomenon of Linkage and crossing over, Cytological basis of		
	crossing over, Molecular mechanism of crossing over, Crossing		
	over at four strand stage, Multiple crossing overs and organelle		
	heredity.		

Reference books

- Snustad, D.P., Simmons, M.J. (2009). Principles of Genetics. V Edition. John Wiley and Sons Inc.
- Klug, W.S., Cummings, M.R., Spencer, C.A. (2009). Concepts of Genetics. IX Edition. Benjamin Cummings.
- Gardner, E.J., Simmons, M.J., Snustad, D.P. (2006). Principles of Genetics. VIII Edition John Wiley & Sons.

- Griffiths, A.J.F., Wessler, S.R., Lewontin, R.C. and Carroll, S.B. IX Edition. Introduction to Genetic Analysis, W. H. Freeman & Co.
- Russell, P. J. (2009). Genetics- A Molecular Approach. III Edition. Benjamin Cummings.

Practicals:

- 1. Study of mitosis with the help of temporary mount of onion root tip.
- 2. Karyotyping with the help of photograph.
- 3. Mendel's experiment on pea.
- 4. Monohybrid and dihybrid cross and their deviations.
- 5. Pedigree charts of some common characters like blood group and color blindness.
- 6. Study of polyploidy in onion root tip by colchicine treatment.
- 7. Demonstration of chromosome map of human.

Department of Biotechnology BSc Biotechnology Program SY B.Sc. Semester III

IKS202-2C: Indian Knowledge System: Vigyan

Credit 2 Contact Hour per week 2

Course type	Theory/Practical		
Purpose of Course	The course is intended to provide undergraduates with a foundational		
	guide to the history, culture and philosophy of India and introduce them to		
	the main themes and debates relating to that history.		
Course Objective	CO 1. To provide a general introduction to Indian Knowledge Syster		
	(IKS) and sensitize the students to the contributions made by ancient		
	Indians in the field of Science, Philosophy and related applications and concepts.		
	CO 2. Understanding the scientific value of the traditional knowledge of Bharata		
	CO 3. Promoting the youths to do research in the various fields of Bhartiya knowledge system		
	CO 4. Converting the Bhartiya wisdom into the applied aspect of the modern scientific paradigm		
Minimum weeks	15 (Including Class work, examination, preparation, holidays etc.)		
per Semester			
Last Review /	June 2023		
Revision			
Pre-requisite	Eagerness to learn our ancient culture, our tradition.		
Teaching	Class Room Teaching, Discussion and Assignment		
Methodology			
Evaluation Method	40% Continuous Assessment (CA)		
	60% End Semester Examination (ESE)		

Units	Particulars Particulars	%	Minimum
		Weightage	Nos. of
		of Unit	Hours
1	Scientific Approaches of IKS-I	25	8
	• Khagol/jyotish Vigyan (Astronomy): Panchaang,		
	Celestial coordinate system, Prediction of monsoon rains		
	Vastukala (Architecture):		
2	Scientific Approaches of IKS-II	25	7
	Krishi Vigyan (Agricultural Practices): Agricultural		
	heritage of India, Ancient agricultural practices, Plant		
	protection through indigenous traditional knowledge		
	during harvesting, threshing and storage		
	Paryavaran Vigyan (Environmental Sciences)		
3	Scientific Approaches of IKS-III	25	8
	Rasa Shastra Evam Dhatu Vigyan (Chemistry and		
	Metallurgy): Vedic references to metals and metal		
	working, Mining and ore extraction, Wax casting of idols		
	and artefacts		
4	Scientific Approaches of IKS-IV	25	7
	Ganita: Mathematics in India		
	Water Management & Transportation: Harappan and		
	Traditional Water Management System: Tank, Lakes,		
	and Stepwells, Communities Involved in Water		
	Management, Modes of Transportations and Reforms		
Reference	hoolig		

Reference books

- 1. Introduction to Indian Knowledge System: Concepts and Applications, Archak, K.B. (2012). Kaveri Books, New Delhi.ISBN-13:978-9391818203
- 2. Introduction To Indian Knowledge System: Concepts and Applications, Mahadevan, B.Bhat, Vinayak Rajat,Nagendra Pavana R.N.PHI, ISBN: 9789391818203
- 3. Glimpse into Kautilya's Arthashastra Ramachandrudu P. (2010), Sanskrit Academy, Hyderabad ISBN:9788380171074
- 4. "Introduction" in Studies in Epics and Purāṇas, (Eds.), KM Munshi and N Chandrashekara Aiyer Bhartiya Vidya Bhavan