VANITA VISHRAM WOMEN'S UNIVERSITY SCHOOL OF SCIENCE AND TECHNOLOGY DEPARTMENT OF BIOTECHNOLOGY

BACHELOR OF SCIENCE (B.Sc.) IN BIOTECHNOLOGY For Undergraduate (UG) Education

SEMESTER - 3

Core Courses (CC)

Syllabus applicable to the students seeking admission in the following Program

B.Sc. Biotechnology w.e.f. the Academic Year 2022-23

B.SC. BIOTECHNOLOGY SYLLABUS F.Y. B.Sc. Semester 3

BACHELOR OF SCIENCE (B.SC.) BIOTECHNOLOGY

SEMESTER 3

CORE COURSE PAPER

BIOCHEMISTRY-II

Course Objectives:

- To introduce students about metabolic pathways of biomolecules ranging from carbohydrates to nucleic acid.
- To make the students understand the chemical processes that takes place inside the cells of living organisms which are necessary to maintain life.
- To make the students aware about the disorders associated with abnormal metabolism.

Course Outcome:

Upon completion of the course, the student shall be able to comprehend

- How the biomolecules synthesized and utilized in living cells in order to maintain life.
- How the set of enzymes are involved in the metabolism of biomolecules.
- How the abnormal metabolism of biomolecules leads to abnormal metabolism.

BT11350 - THEORY COURSE CONTENT

(2 Credits)

Carbohydrate Metabolism

- Introduction to Metabolism: Types (Anabolism, catabolism), Integration of metabolism.
- Gibb's free energy and redox potential
- ATP and reducing powers
- UNIT1 Oxidative Phosphorylation
 - Electron Transport Chain
 - Glycolysis
 - Pentose phosphate pathway
 - Citric acid cycle
 - Gluconeogenesis

7

lectures

	Nucleic acid metabolism		
	• Purine metabolism: Purine biosynthesis - Denovo pathway & Salvage	Q	
UNIT2	pathway, catabolism of purine nucleotides.	0 lacturas	
	• Pyrimidine metabolism: Pyrimidine biosynthesis – Denovo pathway,	lectures	
	catabolism of Pyrimidine nucleotides.		
	Protein Metabolism		
	• Introduction to protein metabolism - Transamination and deamination.		
	Metabolism of aromatic amino acids (Phenyl alanine, tyrosine &	o	
UNIT3	tryptophan).	0 loctures	
	• Metabolism of sulphur-containing amino acids (cysteine, cystine &	lectures	
	methionine)		
	• Metabolism of glycine, lysine, serine, glutamine, histidine.		
	Lipid Metabolism		
	• Introduction to lipid metabolism. Fatty acid biosynthesis: synthesis of		
	palmitic acid, Fatty acid synthase complex and its significance.	7	
UNIT4	• Synthesis of triacylglycerol and glycerophospholipids.	/ lectures	
	• Metabolism of cholesterol. β Oxidation of Fatty acids & α Oxidation of	lectures	
	Fatty acids.		
	• Metabolism of ketone bodies & regulation Lipoprotein metabolism.		
SUGGESTED READING			
1. Naik,	P., 2011. Essentials of Biochemistry (for Medical Students). JP Medical Ltd.		
2. Satya	narayana, U., 2013. Biochemistry. Elsevier Health Sciences.		
3. Lehninger principles of biochemistry, ; by David L. Nelson and Michael M. Cox.			
4. Kogut, M., 1975. Biochemistry: by Lubert Stryer WH Freeman and Company; San Francisco,			
5. Murray, K., Rodwell, V., Bender, D., Botham, K.M., Weil, P.A. and Kennelly, P.J., 2009.			
Harper's illustrated biochemistry. 28. Citeseer, New York, United States.			
6. JAIN, J., JAIN, S., JAIN, N., NAGAR, R., DELHI, N. and JAIN, L.S.H.N., epdf.			
pub_fundamentals-of-biochemistry.			

BACHELOR OF SCIENCE (B.SC.) BIOTECHNOLOGY

SEMESTER 3

CORE COURSE PAPER

ENVIRONMENTAL BIOTECHNOLOGY

Course Objectives:

- The objective of this course is to learn about the about assessment and management of Environmental Pollutions, solid and sewage waste treatment methods and application, Biodegradation and bioremediation and their practical approaches, Applications of Environmental Biotechnology like Bio-resources, Utilization of sewage and Agro-waste, Bioleaching, Biomining, Restoration of land, etc.
- The related experiments will help students to understand how immunologists think and work..

Course Outcome:

Upon completion of the course, the student shall be able to comprehend

- The types of pollutions, their assessment and management through biotechnological approaches and have knowledge to apply these techniques in real life problems.
- The types and various treatment methods for solid and sewage wastes.
- Acquire knowledge about Biodegradation of various compounds like halogenated, pesticides, herbicides, etc. Have knowledge about types of Bioremediations, methods and application as well as phytoremediation approaches will be acquired.
- The information of various Applications in Environmental Biotechnology, which can be useful for practical aspects.

BT11360 - THEORY COURSE CONTENT		
(2 Credits)		
	Liquid waste management using living system	
	• Types of liquid waste	7
UNIT1	• Sources and characterization of waste water	/ looturos
	• Analysis of waste water	lectures
	• Treatment of waste water (Use of Microbial enzymatic techniques)	

	• Waste water treatment at industrial level: Dairy, Sugar and Pharma	
	Sludge and solid waste treatment and disposal	
	• Sources and characteristics of sludge	
	• Methods of sludge treatment and disposal: Preliminary operations, Sludge	8
UNIT2	thickening, Stabilization, Conditioning, Disinfection, Dewatering, Heat	lectures
	drying, Ultimate disposal	lectures
	• Septage and septage disposal	
	• Treatment and disposal of solid waste: incineration and landfilling	
	Biodegradation and Bioremediation	
	Biodegradation of xenobiotic compounds	
	• Characteristics, Types, Hazards and General features of recalcitrant	
	xenobiotic compounds	Q
UNIT3	Hydrocarbon degradation	0 locturos
	Biodegradation of halogenated compounds	lectures
	• Biodegradation of pesticides and herbicides	
	• Use of mixed microbial population	
	Practical approach	
	Applications of Environmental Biotechnology	
	Bioenergy and Bio-resources	
	• Useful features, undesirable features of biofuels and area to focus for future	
	research	
	• Bioremediation (in situ and ex-situ)	7
UNIT4	• Energy crops	lectures
	Modes of utilization of Biomass	
	• Biogas	
	• Biodiesel	
	Microbial leaching: Bioleaching and Biomining	

	Restoration of degraded lands: biotechnological approaches	
	• Utilization of sewage and Agro-waste	
	SCP production	
	Mushroom production on agro-waste	
	• Vermicomposting	
SUGGESTED READING		
1. Maier, R.M., Pepper, I.L. and Gerba, C.P., 2009. Introduction to environmental microbiology.		
In Environmental Microbiology (pp. 3-7). Academic Press.		
2. Satyanarayana, U., 2013. Biochemistry. Elsevier Health Sciences.		
3. Dubey, R.C., 1993. A textbook of Biotechnology. S. Chand Publishing.		
4. Dubey, R.C., 2014. Advanced biotechnology. S. Chand Publishing.		
5. Gupta, P.K., 1994. Elements of biotechnology. Rastogi Publications.		

BACHELOR OF SCIENCE (B.SC.) BIOTECHNOLOGY SEMESTER 3

CORE COURSE PAPER

ENZYMOLOGY

Course Objectives:

- Enzymology is a requisite discipline which plays central role for many, such as biochemistry, genetic engineering, industrial biotechnology, clinical diagnostics as it is regulating all metabolic reactions, central dogmas of biology.
- Enzymology has so many applications in diverse areas like industries, genetic manipulation to get better life, forensic science which make it a favorite area of scientific exploration.

Course Outcome:

After this course, students will be having knowhow of

- The catalysts and enzymes; their working patterns. Mode of actions, inhibition, kinetics etc.
- Regulation of Enzyme activity.
- Strategies for extraction and purification of enzymes.
- Applications of enzymes.

Image: Image:

	• Introduction of lock and key model of enzyme	
	• Enzyme kinetics: Michaelis-Menten equation and its derivation; Different	
	plots for the determination of Km and Vmax and their physiological	
	significance	
	Factors affecting Enzyme Activity	
	Mechanisms and inhibition of enzymes	
	• Enzyme inhibition: types of inhibition, suicide inhibitor.	Q
UNIT2	Non protein enzymes	0 looturoo
	Other enzyme regulation techniques	lectures
	• Units of enzyme activity	
	Extraction and Purification of Enzymes	
	• Factors affecting isolation of enzyme/ source selection of enzyme	0
UNIT3	• Sources for enzyme production (Plant, animals and microbes)	ð lastures
	• Extraction of soluble, membrane bound enzymes (intracellular and	lectures
	extracellular enzymes)	
	Applications of enzyme	
	• Purification of enzymes: preliminary and advanced methods	7
UNII4	Clinical significance of enzymes/biological roles of enzymes	lectures
	Advantages of enzyme	
	SUGGESTED READING	
1. Larkin	ns, J.A.M., Mosse, J. and Chapman, B., 2011, August. Is the evolution of bio	ochemistry
texts of	lecreasing fitness? A case study of pedagogical error in bioenergetics. In Proc	eedings of
The A	ustralian Conference on Science and Mathematics Education.	
2. Murray, R.K., Granner, D.K., Mayes, P.A. and Rodwell, V.W., 2003. Illustrated Biochemistry.		
3. Voet,	D. and Voet, J.G., 2021. Biochemistry. John Wiley & Sons.	
4. Campbell, M.K., Farrell, S.O. and McDougal, O.M., 2016. Biochemistry. Cengage Learning.		
5. Price, N.C. and Stevens, L., 1999. The cell and molecular biology of catalytic proteins. In		
Fundamentals of Enzymology (pp. 118-153). Oxford University Press New York.		

- 6. Cornish-Bowden, A., 2013. Fundamentals of enzyme kinetics. John Wiley & Sons.
- 7. Bisswanger, H., 2019. Practical enzymology. John Wiley & Sons.
- Walters, D.E., 2000. The Organic Chemistry of Enzyme-Catalyzed Reactions By Richard B. Silverman. Academic Press, San Diego, CA. 2000. xvii+ 717 pp. ISBN 0-12-643745-9. \$89.95.

BACHELOR OF SCIENCE (B.SC.) BIOTECHNOLOGY

SEMESTER 3

CORE COURSE PAPER

BIOTECHNOLOGY PRACTICAL III

Course Objectives:

- To teach students various biochemical determination.
- To teach students various Environmental Biotechnology techniques.
- To teach students various enzyme activity related aspects.

Course Outcome:

Upon completion of the course, the student shall be able to

- Determine various biomolecules.
- Perform quality analysis of environmental samples.
- Determine various parameters of enzyme activities.

BT11380 - PRACTICAL COURSE CONTENT

(2 Credits)

- 1. Estimation of blood glucose by oxidase method.
- 2. Study of sampling technique and sample preservation.
 - Collection of grab and composite sample.
- 3. Physical analysis of sewage/industrial effluent by measuring
 - Acidity, Alkalinity
 - Hardness
 - Residual chlorine
- 4. To estimate total solids (TS), total dissolved solids (TDS) and suspended solids (SS) in the given water sample.
- 5. To estimate dissolved oxygen (DO) content of wastewater by chemically modified winkler method of wastewater
- 6. Determination of indices of pollution by measuring BOD & COD of different effluents
- 7. Bacteriological analysis of water for determination of potability

	Standard plate count	
	• Enumeration of coliforms by MPN technique (membrane filter action method for	
	bacteriological analysis of fecal streptococcoi	
8.	Study of air micro flora by settling plate technique	
9.	To set up soil ecosystem using a Winogradsky column	
10.	Visit to Biogas production plant/Biofuel (Ethanol) production plant/Vermicompost site,	
	Biotech park, savli, BARC vadodra	
11.	To determine Alkaline phosphatase enzyme activity from sprouted mung bean.	
12.	To study effect of temperature on alkaline phosphatase enzyme activity.	
13.	To study effect of pH on alkaline phosphatase enzyme activity.	
14.	To study kinetics (Km and Vmax) of alkaline phosphatase enzyme.	
SUGGESTED READING		
1.	Singh, R., 2000. Introductory practical biochemistry. Alpha Science Int'l Ltd	
2.	Jayaraman, J. and Jayaraman, J., 1981. Laboratory manual in biochemistry (pp. 75-76). Delhi,	
	India:: Wiley Eastern.	
3.	Experimental Microbiology, by Rakesh J. Patel and Kiran R, Patel. Published by Aditya,	
	Ahmedabad, Gajarat.	
4.	K.R. Aneja	

VANITA VISHRAM WOMEN'S UNIVERSITY SCHOOL OF SCIENCE AND TECHNOLOGY DEPARTMENT OF BIOTECHNOLOGY

BACHELOR OF SCIENCE (B.Sc.) IN BIOTECHNOLOGY For Undergraduate (UG) Education

SEMESTER - 3

Skill Enhancement Course (SEC)

Syllabus applicable to the students seeking admission in the following Program

B.Sc. Biotechnology w.e.f. the Academic Year 2022-23

B.SC. BIOTECHNOLOGY SYLLABUS F.Y. B.Sc. Semester 3

BACHELOR OF SCIENCE (B.SC.) BIOTECHNOLOGY SEMESTER 3

SKILL ENHANCEMENT COURSE

BIOMATHEMATICS AND BIOSTATISTICS

Course Objectives:

• The objective is to impart fundamental knowledge about Biomathematics and Biostatistics enhance their skill in scientific calculations which is helpful in research as well as analysis which will support scientific prediction and interpretation. It acquired adequate knowledge & necessary skills about different types of samples, its management as well as Data interpretation.

Course Outcome:

- Students will gain basic knowledge about scientific terminology with its calculating formula.
- They will also familiar with math and statistics for biological data which will help them for optimum analysis.

BT15030 - THEORY COURSE CONTENT				
	(2 Credits)			
UNIT1	 Aqueous solutions Solutions: Definitions and Types Solution preparation: Concentrations of solutions based on Volume, Weight & Degree of saturation: Mole concept: Methods to calculate mole, Molarity, Molality, Normality, Formality, Mass concentration, Solutions of acids Basic rules for the preparation of solution 	7 lectures		
UNIT2	 Acid Base Chemistry Equilibrium constants Acid and bases: Concept of Acid, Base and pH, pH Scale Ionization of water, pH & pOH, Ionization of weak acids and weak bases, Relationship between K_a and K_b for weak acids and bases, pH of solutions of weak acids, Hydrolysis of salts of weak acids and bases, Henderson- Hasselbalch equation 	8 lectures		

	• Buffer: buffer system, resistance of pH using buffer		
	• Criteria for the selection of buffers		
	• Preparation of different buffers		
	Introduction and Basic methods of Biostatistics		
	• Define: Biostatistics, Application of Biostatistics,		
UNIT3	• Sampling techniques, Data collection and presentation: types of data,	8	
UNITS	• Methods of collection of primary and secondary data,	lectures	
	• methods of data collection, graphical representation by histogram,		
	polygon, ogive curves and pie diagram.		
	Basics of Central tendency and dispersion		
	• Skewness and kurtosis (Population and samples)		
	• Measure of central Tendency: Mean, Mode, Median	7	
UNI14	• Measures of Dispersion: Mean Deviation, Standard Deviation	lectures	
	• Quartile deviation, Decile deviation, Percentile deviation.		
	• Population Variance, coefficient of variation Standard error of mean.		
SUGGESTED READING			
1. S. K.	Sawhney, Randhir Singh, Introductory Practical Biochemistry, Narosa Publishe	rs.	
2. Irwin H. Segel, Biochemical calculations, 2 nd Edition, John Wiley & Sons			
3. Khan, I.A., Khanum, A. and Khan, S., 2004. Fundamentals of biostatistics. Ukaaz.			
4. Rastogi, V.B., 2009. Fundamentals Of Biostatistics 2 nd Ed. ANE Books Pvt Ltd.			